
Empirically Efficient Verification for a Class of
Infinite-State Systems?

Jesse Bingham and Alan J. Hu
Department of Computer Science, University of British Columbia

Abstract. Well-structured transition systems(WSTS) are a broad and
well-studied class of infinite-state systems, for which theproblem of verifying
the reachability of an upward-closed set of error states is decidable (subject
to some technicalities). Recently, Bingham proposed a new algorithm for this
problem, but applicable only to the special cases of broadcast protocols and
petri nets. The algorithm exploits finite-state symbolic model checking and was
shown to outperform the classical WSTS verification algorithm on a contrived
example family of petri nets.
In this work, we generalize the earlier results to handle a larger class of WSTS,
which we dubnicely sliceable, that includes broadcast protocols, petri nets,
context-free grammars, and lossy channel systems. We also add an optimization
to the algorithm that accelerates convergence. In addition, we introduce a
new reduction that soundly converts the verification of parameterized systems
with unbounded conjunctive guards into a verification problem on nicely
sliceable WSTS. The reduction is complete if a certain decidable side condition
holds. This allows us to access industrially relevant challenge problems from
parameterized memory system verification. Our empirical results show that,
although our new method performs worse than the classical approach on small
petri net examples, it performs substantially better on thelarger examples based
on real, parameterized protocols (e.g., German’s cache coherence protocol, with
data paths).

1 Introduction

The widespread practical success of finite-state model checking [9, 29] has stimulated
interest in the algorithmic verification of infinite-state systems. The goal is to verify
systems that are naturally modelled as infinite state as wellas systems that might be
finite-state in practice, but that are too large to be verifiedvia finite-state methods in the
foreseeable future (e.g., pushdown automata to model a program’s call stack, parame-
terized memory system protocols to model a realistically-sized memory system).

Well-structured transition systems(WSTS) [19, 2, 20] are a broad class of infinite-
state systems, for which an extensive and elegant body of research has developed. In
particular, the verification problem of determining the reachability of an upward-closed
set of error states is decidable (provided some side conditions are satisfied) via an algo-
rithmic framework we call theclassical approach[2, 20, 18].

? This is an an extended version of [5] that differs from [5] in two ways. First, an appendix
with proofs is added. Second, two minor typographical errors in Sect. 6 and one in Def. 10 are
corrected. This work was supported in part by a UBC Li Tze FongMemorial Fellowship and
a grant from the Natural Sciences and Engineering Research Council of Canada.

Recently, Bingham proposed a new algorithm for this problem[4]. Unlike the clas-
sical approach, the new algorithm works by computing fix-points over a series of finite-
state systems of increasing size, allowing the leveraging of sophisticated techniques
from finite-state model checking. However, the theory was developed only for a special
case of WSTS, namely, broadcast protocols (which subsume petri nets). Using finite-
state symbolic model checking [7], Bingham demonstrated a contrived family of petri
nets for which the new algorithm substantially outperformed the classical approach.

This paper generalizes and extends the earlier work in several ways. We introduce
a new subclass of WSTS and generalize the earlier theory and algorithms to apply to
the subclass. We show how the new subclass subsumes petri nets, broadcast protocols,
lossy channel systems, and context-free grammars. We introduce an optimization to the
algorithm that accelerates convergence. We also provide a new reduction that allows
soundly applying our verification method to certain protocols with unbounded conjunc-
tive guards, which are not WSTS, as commonly occurs in memorysystem protocols.
Finally, we give experimental evidence on a variety of infinite-state systems, includ-
ing German’s parameterized cache coherence protocol [23],a widely cited verification
challenge problem.

Proofs of all theorems in this paper can be found in the appendix.

2 Preliminaries
Let N denote the natural numbers. We use various notations for orderings:� will denote
an arbitrary reflexive and transitive relation (which may satisfy stronger requirements
depending on context), and we writex≺ y to meanx� y∧y 6� x. The symbol≤ will de-
note the usual ordering on the reals and subsets thereof, andfor any positive dimension
m, we extend≤ to be the usual point-wise vector ordering overN

m defined byv≤ u iff
vi ≤ ui for all 1≤ i ≤ m. We also employ≤ as the covering relation between petri net
markings.

The systems we consider are a certain type ofwell-structured transition system, and
the “bad” states will be characterized by anupward-closedset. These and other relevant
notions are now defined, mostly following the terminology of[20].

Definition 1 (upward-closure,basis,upward-closed set).Let � be a reflexive
and transitive relation over a set X. For Y⊆ X, theupward-closureof Y is the set
↑Y = {x | ∃y∈Y : y� x}. When U=↑Y we say that Y is abasisfor U. A set U is said
to be�-upward-closed(or simplyupward-closedif � is clear from context) if U=↑U.

Definition 2 (well-quasi-ordering). A well-quasi-ordering (wqo)is a reflexive and
transitive relation� over a set X such that for any infinite sequence x0,x1,x2, . . . over
X, there exists i, j ∈ N such that i< j and xi � x j .

Lemma 1. [25] If � is a wqo, then any�-upward-closed set has a unique finite basis
B such that for all x,y∈ B we have x6� y∧y 6� x.

Given upward-closedU , we letbasis(U) denote the unique finite basis ofU , the
existence of which is guaranteed by Lemma 1.

Definition 3 (well-structured transition system).A well-structured transition system
(WSTS) is a triple(S,→,�) such that

previousreach, reach : finite subset of S
previousreach:= /0
reach:= gen(U)
while ↑reach 6⊆↑previousreach do

if I∩ ↑reach 6= /0 then
exit with verification failure

previousreach:= reach
reach:= reach∪Pred(↑reach)

exit with verification success

Fig. 1. The classical algorithm

1. S is a (possibly infinite)state space
2. →⊆ S×S is called thetransition relation
3. � is a wqo over S
4. For all x,x′,y∈ S such that x→ x′ and x� y, there exists y′ ∈ S such that y→ y′.1

The covering relation≤ between petri net markings is a wqo. Given a finite set of
markingsM, the set↑M includes all markings that cover at least onem∈ M. Petri nets
are WSTS (with respect to≤) [20].

The decision problem regarding WSTS we aim to solve is as follows.

Definition 4 (WSTS Safety Problem).Given a WSTSS = (S,→,�), an�-upward-
closed set U⊆ S, and a set ofinitial statesI ⊆ S, does there exists a sequence x0 →
··· → x` such that x0 ∈ I and x̀ ∈ U? We writeSafe(S , I ,U) (resp.,¬Safe(S , I ,U)) if
the answer is “no” (resp. “yes”).

We have intentionally omitted any restrictions on the initial state setI to avoid need-
lessly complicating this paper. In generalI can be infinite, hence a symbolic repre-
sentation is necessary; for example, [2, 4] require thatI be a so-calledparametric set.
Decidability of the WSTS Safety Problem depends (in part) onthe form ofI .

Theclassical approachto this problem is given in Fig. 1 [2, 18, 20]. On the surface,
this algorithm resembles the well-known finite-state backward reachability analysis,
i.e. least fix-point computation, the difference being that the involved sets are upward-
closed (and hence infinite), so a symbolic representation (i.e. finite basis) is necessary.
For the approach to work, the following conditions are necessary:

– Given finitereach⊆ S, we must be able to compute another finite setX such that
↑X = {x | ∃y∈↑reach: x→ y}. We denoteX by Pred(↑reach).

– I must be represented in a form that permits the intersection checks of theif con-
ditional.

Necessary for practical implementation of the classical algorithm is an efficient repre-
sentation ofreach, since this set can become very large. Delzanno et al. propose using
a data structure calledcovering sharing trees(CST) for this purpose [12]. One draw-
back of this technique is that checking for convergence is co-NP hard in the size of the
involved CSTs.
1 This requirement is calledmonotonicityin [2] andstrong compatibilityin [20]. The latter paper

gives a slightly weaker definition of WSTS, requiring thaty′ only satisfyy→∗ y′.

3 Nicely Sliceable WSTS

Our algorithm works on a subclass of WSTS we callnicely sliceable WSTS(NSW).
To be deemed a NSW, a WSTS must satisfy three properties. We first describe each
intuitively and provide some motivation for why they are required, and then we present
the formal definitions.

– Discrete: The wqo must be discrete, meaning that for any elementx, there is a
bound on the length of any strictly decreasing sequence starting with x. We call the
length of the longest such sequencex’s weight. Furthermore, discreteness requires
that the number of elements of a given weight be finite. Discreteness allows for
finite-state model checking to be applied to the subsystem formed by bounding the
weight of states.

– Weight-respecting: When a transition changes the weight, the same change in
weight can be effected by the transition relation for elements greater than the start-
ing state of the transition. Weight-respectfulness is a technical requirement needed
for the proof of the Convergence Theorem, which gives a termination condition for
our algorithm.

– Deflatable:Whenever we have a transition from outside an upward-closedsetU to
a state inU , deflatability asserts the existence of a similar transition involving states
of bounded weight. Deflatability is similar to downward compatibility [20], though
the two are incomparable. Deflatability, like weight-respectfulness, is essential in
the proof of our Convergence Theorem.

Definition 5 (dwqo,weight function,base weight).A wqo is adiscrete wqo(dwqo)
over X if for all x∈X there exists k∈N such for any sequence x0 ≺ x1 ≺ ·· · ≺ x` = x we
have` ≤ k. Associated with a dwqo� is theweight functionw : X → N that maps each
x to the minimum such k. We also require that{x∈ X | w(x) = i} be finite for each i∈N.
For �-upward-closedU, thebase weightof U isbw(U) = max({w(x) | x∈ basis(U)}).

Example 1.For m≥ 1, the point-wise vector ordering≤ overN
m is a dwqo, and for

eachv∈ N
m we havew(v) = ∑m

i=1vi . The set{0,1/2,2/3,3/4, . . .}∪{1} along with≤
is an example of a wqo that is not a dwqo, since takingx = 1 violates Def. 5.

Definition 6 (discrete WSTS).A discrete WSTS(DWSTS) is a WSTS(S,→,�) where
� is a dwqo.

In a DWSTS, the weight function slices the state space into a countable number of finite
partitionsS0,S1,S2, . . ., whereSi = {x∈ S| w(x) = i}.

Example 2.Petri nets along with the marking dominance relation≤ are an example of
DWSTSs; the induced weight function simply counts the number of tokens.

Definition 7 (weight respecting DWSTS).A DWSTS is said to beweight respectingif
we may strengthen condition 4 of Def. 3 to require that w(x′)−w(x) = w(y′)−w(y).

Example 3.Petri nets are weight respecting DWSTSs. Supposex→ x′ by firing transi-
tion t, andx� y. Since firingt always changes the total number of tokens by the same
amount, we can obtain the appropriatey′ by firing t from y.

Definition 8 (δ-deflatable DWSTS).A DWSTS(S,→,�) is said to beδ-deflatablefor
δ ∈ N if whenever x→ x′ and z� x′, there exists y and y′ such that all of the following
hold: 1) y� x, 2) y→ y′, 3) z� y′, 4) w(y) ≤ w(z)+ δ, and 5) w(y′) ≤ w(z)+ δ. (See
Fig. 2.)

x x′

z

y y′

∀

∃
weight ≤ w(z) + δ
weight > w(z) + δ

Fig. 2.A diagrammatic presentation of Def. 8. A DWSTS(S,→,�) is said to beδ-deflatable (for
δ ∈ N) if for all x,x′,z∈ S that satisfy the depicted relations, there existsy,y′ ∈ S that satisfy the
depicted relations, and also bothw(y) andw(y′) are not greater thanw(z)+δ.

Example 4.Petri nets areδ-deflatable, whereδ is the maximum over all in-degrees and
out-degrees of the petri net transitions. A suitabley→ y′ can be constructed by taking
only the tokens involved in the firing that takesx→ x′ and adding them toz.

Definition 9 (NSW). A δ-NSW is a DWSTS that is weight-respecting andδ-deflatable.
A NSW is a δ-NSW for someδ.

We now give three examples of systems that are NSW.

Example 5.Broadcast protocols (BP), which model the composition of identical finite-
state processes, are 2-NSW. Here we roughly follow the definition of [18, 17]. A BP is a
triple (L,Σ,R), whereL is the set oflocal states, Σ is the set oflabels, andR⊆ L×Σ×L.
Σ is required to be of the formΣl ∪Σr ×{!,?}∪Σb×{!! ,??}, whereΣl , Σr , andΣb are
disjoint sets ofactions, respectively calledlocal, rendez-vous, andbroadcastactions.
Labels of the form(a,d) are written simply asad, i.e.(a,??) is writtena??. Intuitively,
labels of the forma! anda!!, are outputs, while those of the forma? anda?? are inputs.
We make the following restriction onR: for anya!! ∈ Σ and anys∈ L, there existss′ ∈ L
such that(s,a??,s′) ∈ R.

The semantics of a BP(L,Σ,R) is the transition system(S,→) where the state space
S is the set of all nonempty finite words overL, ands→ s′ iff s = `1 . . . `n ands′ =
`′1 . . . `′n, and one of the following hold.

– local transition: there exists 1≤ i ≤ n and an actiona∈ Σl such that(`i ,a, `′i) ∈ R,
and`′j = ` j for all j ∈ {1, . . . ,n}\ {i}.

– rendez-vous transition: there exists distincti,k ∈ {1, . . . ,n} and an actiona ∈ Σr

such that(`i ,a!, `′i)∈Rand(`k,a?, `′k)∈R, and`′j = ` j for all j ∈ {1, . . . ,n}\{i,k}.

– broadcast transition: there exists 1≤ i ≤ n and an actiona ∈ Σb such that
(`i ,a!! , `′i) ∈ Rand, for eachj ∈ {1, . . . ,n}\ {i}, (` j ,a??, `′j) ∈ R.

The weight of a BP state is simply its length (i.e. the number of processes involved).
Weight respectfulness of a BP follows from the fact thats→ s′ implies thatsands′ are
of the same weight. BPs are 2-deflatable; here 2 arises from the fact that a rendez-vous
transition is guarded by 2 processes.

Example 6.Lossy Channel Systems (LCS) [1] are 1-NSW. The state of a lossy LCS is
a pair2 (s,σ), wheres an element in a finite state space, andσ ∈ Σ∗ is a string over the
channel alphabetΣ. The usual wqo defined by(s1,σ1) � (s2,σ2) if s1 = s2 andσ1 is a
(not necessarily contiguous) substring ofσ2 is a dwqo3. The associated weight function
is w((s,σ)) = length(σ). A transition of a LCS can manipulate the channel string by
appending a symbol to the tail, removing a symbol from the head, or nondeterministi-
cally deleting a symbol from anywhere in the string. The reader may verify that these
systems are 1-deflatable and weight-respecting.

Example 7.Context-free grammars (CFG) are NSW. A CFG is a tripleG = (N,T,R)
whereN andT are disjoint, finite sets ofnonterminal symbolsandterminal symbols,
respectively, andR⊆N×Σ∗ is a finite set ofproduction rules, whereΣ = N∪T . A CFG
corresponds to the NSW(Σ∗,→,�), wherex→ y iff there existx1,x2 ∈ Σ∗ and(α,β) ∈
Rsuch thatx = x1αx2 andy = x1βx2. The dwqo�⊆ Σ∗×Σ∗ is such thatx� y iff x can
be obtained by deleting zero or more symbols from3 y. The weight function isw(x) =
length(x). The system isδ-deflatable, whereδ = max({length(x) | ∃y∈ N : (y,x) ∈ R}).
Weight respectfulness comes from the fact that each production rule induces a fixed
weight change.

4 Our Algorithm

This section develops our algorithm, which is shown in Fig. 3. The inputs are aδ-NSW
(S,→,�), a set of initial statesI , and an�-upward-closed set of target statesU . For
eachi = i0, i0 +1, i0 +2, . . ., (wherei0 = bw(U)) the algorithm computes the backward
reachable setbr(U, i), which is the set of states from whichU is reachable along a path
that never exceeds weighti. Formally, we have the following definition.

Definition 10 (br). Given a WSTS(S,→,�), a set Y⊆ S, and i∈ N we letbr(Y, i)
denote the set of all x∈ S such that there exists a sequence x0 → x1 → ··· → x` such
that x0 = x, x̀ ∈ Y, and for all0 ≤ j ≤ ` we have w(x j) ≤ i. We also definebr(Y) =
S∞

i=0br(Y, i).

Sincebr(U, i) is necessarily finite for alli ≥ 0, this set can be computed using clas-
sical finite-state symbolic model checking [7] based on BDDs[6]. The algorithm ter-
minates upon either of the following events:

2 For simplicity we include only a single channel, the usual definition allows for an arbitrary
(but finite) number of channels.

3 That this relation is a wqo is known asHigman’s Lemma[25].

– Convergence occurs. Byconvergence, we mean that we have reached ann such
that ↑br(U,n) = br(U). How this is done is articulated in our Theorem 1 below.
The existence of such ann is guaranteed by Theorem 2.

– Intersection with the initial states is detected. Since we have left the requirements
of the initial states undefined, we have necessarily left this check undefined in our
algorithm. In general, for this check to be computable, we must be able to decide if
I ∩br(U) = /0, givenbr(U,n), wheren is as in the previous item.

We now present two theorems. Theorem 1 gives us a necessary and sufficient con-
dition for convergence, while Theorem 2 guarantees that ouralgorithm will always
terminate.

Theorem 1 (Convergence).For a δ-NSW, an upward-closed set U, and n≥ bw(U),

br(U,n+ δ)⊆↑br(U,n) (1)

if and only if
br(U) =↑br(U,n) (2)

Theorem 2. For any DWSTS and upward-closed set U, there exists an n satisfying (2).

In order to use Theorem 1 in our algorithm, we must have a meansto decide (1). Our
approach requires the use of a computablelifting operator, which intuitively “lifts” a set
br(U, i) to a truncated version of its upward-closure. The truncation omits everything
with weight strictly greater than some givend ∈ N; hence finiteness is preserved.

Definition 11 (lifting operator). Given a dwqo� over a set X, the associatedlifting
operatoris the functionLift : X×N → 2X defined by

Lift(x,d) = {y | x� y∧w(y) ≤ d}

We extendLift to act on sets by decreeingLift(Y,d) =
S

y∈Y Lift(y,d).

The following theorem explains how the lifting operator is relevant to deciding contain-
ments along the lines of (1). For a finite setX, let maxw(X) = max({w(x) | x∈ X})

Theorem 3. Let � be a dwqo over a set X, and let Xi−1 and Xi be finite subsets of
X such thatmaxw(Xi−1) ≤ i − 1 and maxw(Xi) ≤ i. Then Xi ⊆↑Xi−1 if and only if
Xi ⊆ Lift(Xi−1, i).

4.1 An Optimization

In this section we propose an optimization to the algorithm of Fig. 3. Note that in Fig 3,
the computation ofbr(U, i) involves an iterative fix-point computation, starting withset
U≤i = {x∈U | w(x) ≤ i}. In some sense, much of the work of this computation was
already performed when computingbr(U, i −1); since this is a subset ofbr(U, i), it is
redundant to “rediscover” these states. Also note that

U≤i ⊆ Lift(br(U, i −1), i) ⊆ br(U)

1 i := bw(U)
2 n := i
3 Γi−1 := /0
4 while (n≥ i−δ) do
5 compute Γi := br(U, i)
6 if intersection(Γi , I) then
7 exit with verification failure
8 if (Γi 6⊆ Lift(Γi−1, i)) then
9 n := i
10 i := i +1
11 exit with verification success

Fig. 3.Our algorithm, which, given aδ-NSWS , an upward-closed setU , and a set of initial states
I , decidesSafe(S , I ,U) using finite-state model checking. The variablei represents the maximum
weight of the states computed in each iteration of the while-loop. i is initially the base weight
of U and is incremented each iteration. The variablen tracks the last value ofi for which “new”
states were found inbr(U, i) (see Def. 10), i.e. statesx that weren’t already ”covered” by the
existence ofy∈ br(U, i−1) such thaty� x. The condition of the while loop (line 4) will only fail
when (1) holds, which by Theorem 1 indicates convergence. Each iteration of the loop involves
computingbr(U, i), which is done in a nested backward reachability loop (implicit in line 5). Line
6 tests to see if the initial states have been reached, and line 7 terminates if so. Line 8 determines
if something “new” was found this iteration, if son is updated to bei. If the condition of line 8
fails δ times consecutively, by Theorem 3 we haveΓn+δ ⊆ Γn+δ−1 ⊆ ·· · ⊆ Γn and thus (1) holds
and verification is successful. Theorem 2 guarantees that this will eventually happen.

It follows that we can eliminate the unnecessary overhead bystarting the fix-point com-
putation fromLift(br(U, i −1), i), a set which we need to compute anyway for the con-
tainment check of line 8. Our optimization involves replacing lines 3 and 5 of Fig. 3
with the following, respectively:

3′ Γi−1 := basis(U)
5′ compute Γi := br(Lift(Γi−1, i), i)

(3)

This optimization has the potential to greatly reduce the number of iterations performed
in the fix-point computations. As an extreme example, in an iteration of the outer loop
for whichbr(U, i) ⊆ Lift(br(U, i −1), i) holds, the computation ofΓi will involve only
a single backward image computation.

Theorem 4. The optimization (3) preserves correctness of our algorithm.

5 Implementation Using Symbolic Model Checking

Given an NSW(S,→,�), our algorithm manipulates finite subsets ofS, so, in theory,
we can directly apply standard finite-state symbolic model checking. In practice, we
must provide a state encoding for the the finite-state subsets and a way to compute the
tasks needed by our algorithm:

– the fix-point computation of line 5 or 5′

– the intersection check of line 6
– the lifting operation of line 8
– the containment check of line 8

This section sketches how we implemented the algorithm for various types of NSW.
Our current implementation uses a very straightforward BDD-based approach, but our
algorithm should be able to harness the many advances in symbolic model checking.

5.1 Parameterized Protocols

For petri nets and extensions such as broadcast protocols, there is a natural notion of
local state, i.e., the (finite) state of each process in the broadcast protocol, or the place
(out of a finite number) occupied by each token in a petri net. Our encoding follows [4]
and usesconcrete global states, i.e. tuples over local states. The weight is simply the
number of processes, so we can represent subsets ofSi by sets overLi , whereL is the
local state space. It is straightforward to construct a BDD for the transition relation
in this framework, and hence the fix-point computation. The lifting operation is called
existential liftingand can be computed using standard BDD operations. Finally,[4]
shows that whenI is a so-calledparametric set, the intersection check of line 6 can also
be performed using standard operations.

5.2 Lossy Channel Systems

As explained in Example 6, the infinite state space of a LCS isS= C× Σ∗, where
C is the finite state space of the control, andΣ is the channel alphabet. LetS≤i =
{(c,σ) ∈ S| length(σ) ≤ i}. Similarly to our encoding for parameterized protocols, we
represent a subset ofS≤i by a collection of tuples of the form(s,c1,c2, . . . ,ci), where
s∈ Sand eachc j ∈ Σ∪{empty}. Herec1, . . . ,ci stores the contents of the channel, and
the new symbolemptyindicates that the channel “slot” does not contain a message. The
lifting operator simply inserts an element ofΣ∪{empty} nondeterministically into the
channel, hence (possibly) increasing the number of non-emptyslots by 1. The intersec-
tion and containment checks are also straightforward in this representation.

5.3 Comparison to Standard Approach

Comparing our approach to the classical approach (i.e., CSTs) provides intuition about
when each approach is likely to perform better.

ConvergenceGiven two CSTsC1 andC2, the problem of checking ifC1 subsumes
C2 (i.e. if the upward-closed set represented byC1 is a superset of that ofC2) is co-NP
hard in the size of the involved CSTs [12]. Unfortunately, checking subsumption is an
integral part of the classical algorithm (cf. thewhile condition in Fig. 1). To combat
this problem, Delzanno et al. develop a sophisticated heuristic solution in which certain
CST simulation relations facilitate pruning of an (exponential time) exact subsumption
check [13]. In contrast, subsumption between two BDDs can bedecided in time propor-
tional to the product of their sizes [6]. In fact, we can correctly replace the containment
of line 8 of Fig. 3 with an equality test:Γi 6= Lift(Γi−1, i). This test can be donein
constant timeusing a reasonable BDD library, such as CUDD [30].

Data Structure Size The main efficiency difference is likely to derive from the
sizes of the underlying data structures. Predicting the dynamics of the sizes is a com-
plex problem. Though BDDs compactly represent many practical boolean functions,
the worst case size is exponential in their height (i.e. the number of boolean variables).
Similarly, although bounds on the size of CST have not been derived in the literature
(to our knowledge), any such bound is at least exponential inthe height of the structure.
Here, we consider data structure height as a coarse measure of worst-case size.

The CST-based approach is applicable to both petri nets and broadcast protocols. Let
L be the set of local states (i.e. petri net places). Then we call |L| thedimensionalityof a
parameterized protocol. The height of the CSTs is fixed and equal to the dimensionality,
while the height of the BDDs is at most(nf + δ)dlog2 |L|e, wherenf is the final value
of n in our algorithm. This suggests that our approach might be superior when(nf +
δ)dlog2 |L|e is much less than the dimensionality, since under such circumstances the
CSTs are more likely to blow-up.

For other NSW, such as LCS and CFG, we expect our ability to encode large control
states spaces and/or large alphabets compactly using BDDs to provide our approach
with an advantage for systems with these characteristics.

6 Conjunctive Guard Reduction

Though WSTS (and indeed NSW) encompass a broad and importantclass of infinite
state systems, there are common system attributes that preclude well-structuredness. An
example of such an attribute is the so-calledconjunctive guard(CG). CG are used in
parameterized systems of processes when a transition is to be enabled only if the local
states ofall processes satisfy some predicate. This contrasts with petri net or broadcast
protocols, in which only a fixed, finite number of processes may guard a transition.
Unfortunately, endowing petri nets or broadcast protocolswith CG renders even safety
property verification undecidable [15]. In this section we develop a sound reduction that
reduces a BP with conjunctive guards with to a BP.

Emerson and Kahlon have proposed a soundand completeverification technique for
a class of protocols with CG [16], however it is unclear if theapproach will scale beyond
systems with small local state. For example, their subsequent treatment of German’s
protocol requires a nontrivial amount of manual reasoning [14].

BPs were defined formally in Example 5; here we extend that definition to define
conjunctively guarded broadcast protocols(CGBP). A CGBP is a tuple(L,Σ,R,g),
where(L,Σ,R) is a BP, andg : Σl → 2L. For each actiona ∈ Σl , g(a) is called the
conjunctive guard. The semantics are changed so that a local transitiona may occur
only if all other processes are in states that satisfy the conjunctive guard ofa4. For-
mally, we conjoin the following condition to the local transition semantics presented in
Example 5:̀ j ∈ g(a) for all j ∈ {1, . . . ,n}\ {i}.

4 Our definition of CGBP allows only local actions to have conjunctive guards. The definition
and the reduction can be generalized to support conjunctively guarded rendez-vous and broad-
casts.

Local actiona is said to beconjunctively guardedif g(a) 6= L. Hence a BP is a
CGBP in which no action is conjunctively guarded, since in this case the additional
requirement on each local transition is tautological.

Our reduction transforms a CGBPB = (L,Σ,R,g) into a BPB ′ = (L′,Σ′,R′). In-
tuitively B ′ replaces conjunctively guarded local actions with broadcasts. These new
broadcasts allow all processes to check if theywould havepermitted the transition inB ,
i.e. if their local state satisfies the CG. Whenever a processdetects a violation of a CG
in this manner, it refuses to participate in any future actions by “resigning”; resigned
processes are stuck in that state forever.

Formally, we defineB ′ as follows. We denote byΣcg the set of conjunctively
guarded actions inB , i.e.Σcg = {a | a∈ Σl ∧g(a) 6= L}.

– L′ = L∪{resigned}, whereresignedis a new local state not inL. A process will
enterresignedif it notices (through a broadcast) that a conjunctive guardwas vio-
lated.

– Σ′ is defined byΣ′
l = Σl \Σcg, Σ′

r = Σr , andΣ′
b = Σb ∪Σcg, i.e. all conjunctively

guarded local actions are replaced with broadcasts.
– R′ contains exactly the following transitions

• for each (`,α, `′) ∈ R such thatα ∈ {a!,a?,a!! ,a??| a∈ Σr ∪Σb} ∪ Σ′
l we

have(`,α, `′) ∈ R′. Hence all rendez-vous, broadcast, and non-conjunctively
guarded local transitions are unchanged.

• for each(`,a, `′) ∈ Rsuch thata∈ Σcg we have(`,a!! , `′)∈ R′. Hence conjunc-
tively guarded local actions become broadcasts.

• for eacha∈Σcg we have(`,a??, `′)∈R′, wherè ′ = ` if `∈ g(a) otherwisè ′ =
resigned. Hence, upon receiving a broadcast corresponding to a CG transition,
a process is unaffected if it satisfied the conjunctive guard, otherwise it enters
resigned.

• for eacha∈ Σ′
b we have(resigned,a??, resigned) ∈ R′. These transitions serve

only to satisfy the restriction that broadcasts must alwaysbe received.

The following theorem states thatB ′ is a sound reduction ofB , and can be proved by
observing that any reachable state ofB corresponds to a reachable state ofB ′ in which
no process is in local stateresigned.

Theorem 5. For CGBPB , Safe(B ′, I ,U) impliesSafe(B , I ,U).

This reduction is “complete” if a certain decidable side condition holds. For each
conjunctively guarded local transitiona of B , let ĝ(a) ⊆ L be the set of local states
` such that there exists a sequence of zero or more non-conjunctively guarded local
transitions taking̀ to a statè ′ ∈ g(a); note thatg(a) ⊆ ĝ(a). We construct a broadcast
protocolB ′′ that modifiesB ′ as follows. A new local stateerror is added, and when a
process in local statèreceives broadcasta (corresponding to a conjunctively guarded
local action inB), its next state is̀′, defined by

`′ =

error if ` /∈ ĝ(a)
resigned if ` ∈ ĝ(a)∧ ` 6∈ g(a)
` if ` ∈ g(a)

Petri net Our runtimeCST runtimeMax BDD heightCST height (dimensionality)

Multipool 3010 2.09 50 18
CSM 95 0.06 36 14
Mesh(2×2) >1300 1.30 >40 32

Table 1. Experiments involving selected petri nets from [13]. For Mesh(2×2), our tool spaced
out.

Let Error be the set of all broadcast protocol states such that at leastone process is in
local stateerror. We note thatError is upward-closed. The following theorem states
that if Error is unreachable inB ′′, then the conjunctive guard reduction is both sound
and complete.

Theorem 6. For CGBPB , supposeSafe(B ′′, I ,Error). ThenSafe(B , I ,U) if and only
if Safe(B ′, I ,U).

7 Experiments

In this section, we present experimental results for several petri nets, a MESI cache pro-
tocol, a lossy channel system, and a more elaborate caching protocol. All experiments
were run on a machine with an Intel Pentium 4 at 2.6GHz and 4GB total memory. The
implementation of the classical approach we compare against is based on an extension
of CSTs calledinterval sharing trees[21].

7.1 Petri Nets

In [13], Delzanno et al. run their CST-based implementationof the classical approach
against several petri nets. These nets have small dimensionality, so, as discussed in
Sect. 5.3, we do not expect our approach to perform well. Indeed, Table 1 shows that the
CST-based implementation outperforms our approach by several orders of magnitude.
Recall from Sect. 5.3 that we anticipated that our approach would have an advantage
when the height of our BDDs is dwarfed by the height of the CSTs, which is not the
case here. In fact, for all three petri nets, the CSTs enjoy a shorter height than the BDDs.

7.2 MESI Protocol

MESI is a common variety of cache coherence protocol. In a MESI protocol, each
client has a cache block in one of four states:modified(M), exclusive(E),shared(S), or
invalid (I). Although many MESI protocols are conceivable, here we use the standard
version used by computer architects (e.g., [10]), which hasa conjunctive guard, so we
use our reduction from Sect. 6.

We wanted a “knob” that would give us some control over the size of the local state
space. Since cache protocols are typically used to orchestrate the sharing of multiple
blocks, we instantiated the MESI protocol overm blocks5, for m∈ {1,2,3,4}.

5 In this case, since the “sub-protocols” controlling each block are independent, correctness for
m= 1 entails correctness for allm≥ 1. In practice, however, such a simplification is often not

of blocksOur runtimeCST runtimeHytech runtimeMax BDD heightdimension

1 0.0 0.0 0.0 9 5
2 0.1 0.2 380.0 18 25
3 0.7 131.9 >7989.0 27 125
4 4.6 36 625

Table 2.Results for the MESI protocol with conjunctive guards over multiple blocks. Run times
are in seconds. The columndimensionindicates the height of the CST data structures in the CST
approach, and also the width of the real vectors processed byHytech in Delzanno’s polyhedral
approach.

Results are given in Table 2. Our CG reduction allowed the verification to succeed,
so there was no need to verify the side condition. We compare our result against both
the CST-based classical approach and another variant of theclassical approach based on
the polyhedral model checker hytech [11, 24]. The results clearly indicate the superior
scalability of our approach as the local state grows. The Hytech-based approach aborts
even form= 3, reporting “Out of memory”. The parser of the CST tool cannot handle
the size of the description of MESI with 4 blocks, which is 5.9MBs. This large size
arises because the broadcast matrices used by the classicalapproach grow quadratically
in the dimension of the problem. This contrasts with the mere30 KB of SMV that
constitutes our tool’s input.

7.3 Alternating Bit Protocol

As an experiment with lossy channel systems, we selected thealternating bit protocol
(ABP). ABP involves two unbounded, lossy channels, one thatcarries data and se-
quence bits from the sender to the receiver, and another thatcarries acknowledgements
from the receiver to the sender. Our ABP model is based on the presentation in [27],
and we verify that whenever the sender receives an acknowledgement, the previously
sent data (a copy of which is saved by the sender) matches the receiver’s data buffer.
As a complexity knob, we vary the numberdata count, which specifies the number of
different data values that may be sent. Results are shown in Table 3.

7.4 German’s Protocol

German’s protocol [23] is a challenge problem for parameterized verification that has
been previously tackled in several papers [28, 26, 8]. As in [8], we include a one bit data
path. The original description [23] is a Murφ model, and is almost a CGBP: the Murφ
description involves a variable of typeclient ID. We’ve encoded this variable by simply
giving each process an extra bit, which is true iff the original variable would point to
the process. This system is a CGBP, and our CG reduction is applied.

As mentioned in Sect. 7.2, evendescribinga BP in a format suitable for the classical
approach is problematic when the dimension is large. Due to its various channels and

possible, because real protocols can exhibit nontrivial interactions between different blocks.
This experiment measures how our approach handles the explosive growth in local state re-
sulting from analyzing multiple blocks.

data countour runtime

3 0.2
7 0.6

15 1.9
31 5.7
63 23.1

127 90.0
255 340.7

data countTReX runtime

1 0.01
2 0.02
3 0.05
4 0.08
5 0.15

Table 3. Alternating Bit Protocol Results. As a rough comparison, weran preliminary experi-
ments with TReX, a state-of-the-art verification tool for lossy channel systems [3]. We do not
intend a direct comparison, because of our inexperience with TReX (e.g., an internal data struc-
ture overflowed when we trieddata count= 6). However, the pattern is clear: TReX is faster
when the alphabet (analogous to dimensionality in broadcast protocols) is small, but the run time
is growing exponentially; our tool scales more gracefully.

Property (all passed) Runtime (sec)

Encoding of curPtr 3
Conjunctive guard reduction 214
Data coherence 63

Table 4. Results for German’s Protocol. To convert the protocol to a CGBP, we needed to re-
encode the curPtr variable. Although this encoding was straightforward, we verified the encoding
as a sanity check. The main verification task was “data coherence”, which verified that the value
of each read is the most recently written data value. Since the CG reduction is sound and the veri-
fication succeeded, we actually did not need to run the “conjunctive guard reduction” verification
task. We have provided the run time simply to illustrate thatthe side condition is verifiable in
practice.

the presence of data variables, our model of German’s protocol has a dimensionality of
6144. For this reason, we were unable even to run the CST-toolagainst this example.
The results for our tool are given in Table 4.

8 Conclusions and Future Work

We have introduced the concept of NSW and provided a new algorithm for verification
of these transition systems. The algorithm harnesses the power of finite-state symbolic
model checking. We have also introduced a new reduction for systems with unbounded
conjunctive guards. As predicted by our theory, experimental results show that our new
verification algorithm greatly outperforms existing approaches for systems that involve
large local state spaces, control state spaces, channel alphabets, etc. We attribute this to
the ability of BDDs to encode such sets succinctly.

Our current implementation is fairly naive. We believe moresophisticated symbolic
model checking techniques can produce still better results. Other avenues for future
work include computing bounds on BDD sizes, finding additional NSW applications,
and finding ways to apply our method semi-algorithmically tosystems that are not
NSW.

Very recently, Geeraerts et al. [22] have proposed a compelling approach to veri-
fication of WSTS based on forward reachability. This is the first sound and complete
algorithm that performs forward analysis of WSTS. Similar to our approach, theirs is
based on a framework in which a sequence of finite-state subsystems of increasing size
are examined until either a counterexample is found, or a certain convergence condi-
tion is reached. Convergence occurs when an abstraction, which becomes more and
more precise, is tight enough to verify non-reachability. Obvious directions for future
work include comparing our approach with that of Geeraerts et al., and investigating
the possibility of employing BDDs as we do for backward reachability in their forward
framework.

References

1. P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. InProceedings of
the Eighth Annual IEEE Symposium on Logic in Computer Science, pages 160–170, 1993.

2. P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability theorems for
infinite-state systems. In10th Annual IEEE Symp. on Logic in Computer Science (LICS’96),
pages 313–321, 1996.

3. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability analysis of
complex systems. InProc. 13th Intern. Conf. on Computer Aided Verification (CAV’01),
2001.

4. J. Bingham. A new approach to upward closed set backward reachability analysis. In6th
International Workshop on Verification of Infinite-State Systems (INFINITY), 2004.

5. J. Bingham and A. J. Hu. Empirically efficient verificationfor a class of infinite-state sys-
tems. In11th International Conference Tools and Algorithms for Construction and Analysis
of Systems (TACAS), 2005.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond.Information and Computation, 98(2), 1992.

8. C.T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized verification of
cache coherence protocols. InFormal Methods in Computer-Aided Design, 2004.

9. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Dexter Kozen, editor,Workshop on Logics of Programs,
pages 52–71, May 1981. Published 1982 as Lecture Notes in Computer Science Number 131.

10. D. E. Culler, J. P. Singh, and A. Gupta.Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, 1998.

11. G. Delzanno. Automatic verification of parameterized cache coherence protocols. InPro-
ceedings of the 12th International Conference on Computer Aided Verification, July 2000.

12. G. Delzanno and J. F. Raskin. Symbolic representation ofupward-closed sets. In6th Interna-
tional Conference Tools and Algorithms for Construction and Analysis of Systems (TACAS),
pages 426–440, 2000.

13. G. Delzanno, J. F. Raskin, and L. Van Begin. Attacking symbolic state explosion. InPro-
ceedings of the 13th International Conference on Computer-Aided Verification (CAV), pages
298–310, 2001.

14. E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache coher-
ence protocols. In12th IFIP Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME), October 2003.

15. E. A. Emerson and V. Kahlon. Model checking guarded protocols. InEighteenth Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 361–370, June 2003.

16. E. A. Emerson and V. Kahlon. Rapid parameterized model checking of snoopy cache proto-
cols. In9th International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), pages 144–159, April 2003.

17. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state
systems. InProceedings of LICS 1998, pages 70–80, 1998.

18. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. InProceedings
of LICS ’99, pages 352–359, 1999.

19. A. Finkel. Reduction and covering of infinite reachability trees.Information and Computa-
tion, 89(2):144–179, 1990.

20. A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere!Theoretical
Computer Science, 256(1-2):63–92, 2001.

21. P. Ganty and L. Van Begin. Non deterministic automata forthe efficient verification of
infinite-state. presented at: CP+CV Workshop at European Joint Conferences on Theory and
Practice of Software (ETAPS), 2004.

22. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check: new algorithms for
the coverability problem of WSTS. InProceedings of FSTTCS’04, 24th International Con-
ference on Foundations of Software Technology and Theoretical Computer Science, Chennai,
India, pages 287–298, 2004.

23. S. German. Personal correspondence. 2003.
24. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems.

Software Tools for Technology Transfer, 1:110–122, 1997.
25. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Math-

ematical Society (3), 2(7):326–336, 1952.
26. S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via predicate abstraction.

In Proc. of 5th Intl. Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), pages 267–281, 2004. LNCS 2937.

27. L. Lamport.Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addision-Wesley, 2002.

28. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invari-
ants. InProceedings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 82–97, 2001.

29. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar.
In 5th International Symposium on Programming, pages 337–351. Springer, 1981. Lecture
Notes in Computer Science Number 137.

30. F. Somenzi. Colorado university decision diagram package (CUDD) webpage.
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

A Proofs

The proof of Theorem 1 requires the following lemma.

Lemma 2. For a weight respecting DWSTS and an upward-closed set U, z∈ br(U,n)
and z� y′ imply y′ ∈ br(U,n+w(y′)−w(z)).

Proof: Let d = w(y′)−w(z). z∈ br(U,n) implies there exists a sequencez0 → z1 →
···→ z̀ wherez0 = zandz̀ ∈U , andw(zj)≤ n for all 0≤ j ≤ `. We show by induction
on ` thaty′ ∈ br(U,n+d). If ` = 0, thenz∈U and thusy′ ∈U and we are done since

w(y′)≤ n+d. For the inductive step, we note thatz→ z1 implies that there existsy1 such
thatw(y1) = w(z1)+d, y′ → y1, andz1 � y1 since the system is weight respecting. Note
thatz1 ∈ br(U,n), thus, by our inductive hypothesis,y1 ∈ br(U,n+ w(y1)−w(z1)) =
br(U,n+d), which impliesy′ ∈ br(U,n+d).

�

Proof of Theorem 1: (⇐) Trivial. (⇒) br(U) ⊇↑br(U,n) holds trivially. To prove the
converse containment, suppose that (1) holds, but there existsi ≥ 1 such that there exists
x∈ br(U, i) such thatx /∈↑br(U,n). Sincebr(U, j) ⊆ br(U,k) wheneverj ≤ k, i ≤ n+δ
impliesx∈ br(U,n+ δ)⊆↑br(U,n), thus we need only consideri > n+ δ.

Let x = x0 → x1 → ··· → x` ∈U be a path fromx to U . SinceU ⊆↑br(U,n), there
must existk∈ {1, . . . , `} such thatxk ∈↑br(U,n) andxk−1 6∈↑br(U,n). Then there exists
z∈ br(U,n) such thatz� xk. Now because the system isδ-deflatable, there existsy and
y′ satisfying the five conditions of Def. 8, i.e.y� xk−1, y→ y′, z� y′, w(y) ≤ w(z)+δ,
andw(y′) ≤ w(z) + δ. From Lemma 2 we have thaty′ ∈ br(U,n+ δ) which implies
y∈ br(U,n+δ) sincew(y)≤ n+δ. Sincey� xk−1, this impliesxk−1 ∈↑br(U,n), which
is a contradiction.

�

Proof of Theorem 2: For anyx∈ br(U), let g(x) denote the minimumj such thatx∈
br(U, j). Sincebr(U) is upward-closed [20], there exists a finite setB = basis(br(U)).
Now taken = max({g(x) | x∈ B}). To see that thisn satisfies (2), note that for any
i ≥ n, if there existsx∈ br(U, i) such thatx /∈↑br(U,n), then this contradictsB being a
basis forbr(U), sinceB⊆ br(U,n).

�

Proof of Theorem 3: (⇐) Trivial, sinceLift(Xi , i +1) ⊆↑Xi. (⇒) SupposeXi ⊆↑Xi−1,
and letx∈ Xi . Then there existsy∈ Xi−1 such thaty� x. Sincew(x) ≤ i, this implies
x∈ Lift(Xi−1, i).

�

Proof of Theorem 4:For a setX denoteX≤i = {x∈ X | w(x) ≤ i}. Let b = bw(U), and
let Γb−1,Γb,Γb+1, . . . andΓ′

b−1,Γ
′
b,Γ

′
b+1, . . . be the sequences of values assigned to the

variablesΓi by the algorithm of Fig. 3 and the optimized version, respectively. We first
show that for alli ≥ b we have

Γi ⊆ Γ′
i ⊆ br(U) (4)

(4) clearly holds wheni = b, sinceΓb = Γ′
b. Assume that (4) holds fori ≥ b. Γ′

i ⊆ br(U)
implies thatLift(Γ′

i , i + 1) ⊆ br(U) (sincebr(U) is upward-closed [20]), and hence
Γ′

i+1 = br(Lift(Γ′
i , i + 1), i + 1) ⊆ br(U). Thus the second containment of (4) holds for

i +1. Also, sinceU≤i ⊆ Γi andi ≥ bw(U), we have

Γi+1 = br(U≤i+1, i +1)
= br(Lift(U≤i, i +1), i +1)
⊆ br(Lift(Γi , i +1), i +1)
⊆ br(Lift(Γ′

i , i +1), i +1)
= Γ′

i+1

Therefore the first containment of (4) holds fori +1.
Now letN be the final value of the variablen in the unoptimized algorithm. Then, by

Theorem 1, we have↑ΓN = br(U), which, along with (4) implies↑Γ′
N = br(U). Since

Γ′
k ⊆ Γ′

j whenk≤ j, it follows that for eachi ∈ {N+1, . . . ,N+ δ} we have

Γ′
i = Lift(Γ′

i−1, i) = br(U)≤i (5)

Therefore the optimized version also terminates with the final value ofn beingN, and
computesΓ′

N such that↑Γ′
N = br(U).

�

The proofs of Theorems 5 and 6 use the following terminology.We call a sequence
of statesx0 → x1 → ··· → x` a pathof B ′ (resp. ofB) if → is the transition relation of
B ′ (resp.B).

Lemma 3. σ is a path ofB if and only ifσ is a path ofB ′ in which no process is ever
in the local state resigned.

Proof: Follows from the simple observations that any transition ofB is a transition of
B ′, and, conversely, any transitionB ′ in which no process starts or finishes inresigned
is a transition ofB .

�

Proof of Theorem 5: By Lemma 3, the set of states reachable fromI in B ′ over-
approximates the set of states reachable inB .

�

Proof of Theorem 6: (⇐) Follows by Theorem 5.
(⇒) We assume ¬Safe(B ′, I ,U) and Safe(B ′′, I ,Error), and show that

¬Safe(B , I ,U) follows. Call a pathunsafeif it starts in I and ends inU . For the
remainder of the proof,→ will denote the transition relation ofB ′. For a statex of a
(CG) broadcast protocol (i.e. a finite word over the local state space) and a process
p involved in this state (i.e. an indexp ∈ {1, . . . ,n}, wheren is the length ofx), we
denote byx(p) the local state ofp in x (i.e.x(p) is thepth symbol inx).

For a pathσ of B ′ and a processp, let rsl(σ, p) be the length of the suffix ofσ in
which p is in stateresigned. Note thatrsl(σ, p) = 0 precisely in the case thatp never
resigns. We show how, given an unsafe pathσ of B ′, we can construct another unsafe
pathτ of B ′ such that

Property 1 for all p∈ {1, . . . ,n} we haversl(τ, p) ≤ rsl(σ, p), and
Property 2 there existsq∈ {1, . . . ,n} such thatrsl(τ,q) < rsl(σ,q),

wheren is the number of processes involved inσ. By iterating this construction, one can
transform any unsafe path ofB ′ into an unsafe path ofB ′ in which no process resigns,
which, by Lemma 3, is an unsafe path ofB .

We now describe the construction. Suppose we have an unsafe path ofB ′

x0 → x1 → ··· → x` (6)

in which some process resigns. Letq be an earliest resigning process, i.e.q is such that
there existsi ≥ 1 wherexi−1(q) 6= resigned= xi(q), and further no process is resigned
in xi−1. Then there existsa ∈ Σcg (i.e. a is a CG local action ofB and hencea is a
broadcast action ofB ′) such thatxi−1 → xi is a broadcast transition on the actiona.
SinceSafe(B ′′, I ,Error), we have thatxi−1(q) ∈ ĝ(a). Thus there exists a path ofB ′

x0
i−1 → x1

i−1 → ··· → xm
i−1 (7)

such that

– x0
i−1 = xi−1,

– for eachj ∈ {1, . . . ,m}, x j−1
i−1 → x j

i−1 involves a local transition of processq, and
– xm

i−1(q) ∈ g(a)

Hencexi−1 andxm
i−1 differ only in the local state ofq, and therefore the broadcast of

a may occur fromxm
i−1, yielding a stateyi which differs fromxi only in thatyi(q) =

xm
i−1(q) 6= resigned= xi(q). Note that no process is resigned in any state of (7). Starting

from yi , there exists a path ofB ′

yi → yi+1 → ··· → y` (8)

such that for eachj ∈ {i, . . . , `}, y j differs fromx j in (at most) the local state of process
q. For eachj ∈ {i +1, . . . , `}, the transitiony j−1 → y j involves the same local, rendez-
vous, or broadcast action asx j−1 → x j , which is always possible becausex j−1(q) =
resignedand thusq never performs an output in these transitions. Intuitively, in (8) q
is passive in the sense that it only receives inputs from rendez-vous and broadcasts,
possibly resigning at some point, but is definitely not resigned inyi . Also, sincex` ∈U
and no processes are resigned in any state ofbasis(U), we have thaty` ∈U .

We may construct the desired pathτ by concatenating the firsti states of (6), all of
(7), and all of (8), as follows.

x0 → x1 → ··· → xi−1 → x1
i−1 → ··· → xm

i−1 → yi → ··· → y` (9)

It is easy to see that (9) is unsafe and satisfies properties 1 and 2 above, hence this
completes the proof.

�

