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Abstract

SAT (Boolean satisfiability) has become the primary
Boolean reasoning engine for many EDA (electronic design
automation) applications, so the efficiency of SAT-solving
is of great practical importance. B-cubing is our exten-
sion and generalization of Goldberg et al.’s supercubing,
an approach to pruning in SAT-solving completely differ-
ent from the standard approach used in leading solvers. We
have built a B-cubing-based solver that is competitive with,
and often outperforms, leading conventional solvers (e.g.,
ZChaff II) on a wide range of EDA benchmarks. However,
B-cubing is hard to understand, and even the correctness of
the algorithm is not obvious. This paper clarifies the the-
oretical basis for B-cubing, proves our approach correct,
and maps out other correct possibilities for further improv-
ing SAT-solving.

1 Background

SAT (Boolean satisfiability) has become the primary
Boolean reasoning engine for many EDA (electronic design
automation) applications, e.g., SAT-based model checking
(bounded [6] and unbounded [15]), FPGA routing [18],
ATPG [20], and simulation testcase generation [23]. Such
industrial applications typically require complete SAT
solvers, meaning that the solver must be capable of prov-
ing the problem satisfiable or unsatisfiable. In practice, the
SAT solver is usually the capacity limiter of the tool, so the
efficiency of SAT solving is of great practical importance.

The DPLL algorithm [8, 7] is the core of most modern,
complete SAT solvers. It is essentially a depth-first-search
with some search-space pruning techniques. The original
paper [8] introduced two simple techniques - the pure literal
rule1 and boolean constraint propagation2.

Subsequent research on improving the performance of
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1Also known as “Affirmative-negative rule”.
2“Rule for the elimination of one-literal clauses” in the original paper.

SAT solvers has been mostly focused on improving de-
cision heuristics [11, 5, 13], search-space pruning tech-
niques [14, 25, 3], and efficient implementation [24, 16].
Our focus is on the search-space pruning aspect.

A number of pruning techniques have been proposed so
far. Many have proven to be too expensive to be used dur-
ing the search phase, but can be efficient during prepro-
cessing. The pure literal rule is one example. Other exam-
ples include hyper-resolution [4] and equivalence reasoning
[21, 10, 12].

All SAT-solvers, in one way or another, detect what are
known as conflicts. A conflict occurs when it is deduced
that the current assignment cannot be extended into a satis-
fying one. When a conflict is detected, the solver finds the
reason for the conflict and tries to resolve it. The simplest
method is to backtrack to the last case-split (decision) and
try an alternative assignment. A more elaborate method,
named conflict-directed backtracking (CDB) [14], is to an-
alyze the conflict and backtrack to the variable that is ac-
tually responsible for the conflict. Learning is closely cou-
pled with CDB. Different solvers feature different learning
strategies. One thing in common is that learned clauses
correspond to different cuts in the implication graph – a
directed graph describing logical dependencies among as-
signed literals. For a more extensive introduction into CDB
and learning, and an exhaustive list of references, the reader
is referred to [26].

Learning exploits only a fraction of information infer-
able from conflicts. Learned clauses in general can be quite
long; it is not unusual for them to contain a couple hundred
literals. The average size depends on the specifics of the
problem that is being solved and the overall implementa-
tion and dynamics of the solver. Once the conflict is found
and a new clause is learned there are no guarantees that
the clause will actually be useful later. According to our
experiments, a small percentage of clauses ends up being
used frequently, while the others just increase the memory
requirements and slow down the core of the solver.

Recently, Goldberg, Prasad, and Brayton introduced a
theory that unifies many pruning techniques [19, 9]. The
proposed theoretical framework can be used as a basis for



the development of new pruning techniques. In the same
paper, the authors proposed supercubing, as an example of
the application of the theory. Their solver was a proof-of-
concept, and although supercubing reduced the number of
decisions, no actual speedup was reported. Our follow-
on work [2] pointed out that supercubing is not readily
compatible with 1-UIP learning and proposed an alterna-
tive backtracking scheme to integrate the two techniques,
thereby demonstrating the first supercubing-based solver to
be performance-competitive with standard SAT solvers.

Nadel [17] observed that valuable pruning information
can be obtained from analyzing the set of decision literals
that participated in previous conflicts. His solver, Jerusat,
keeps what we call certificates (clauses that correspond to
decision cuts in implication graph) from previous conflicts
and analyzes them when a new decision is needed. As with
supercubing, the goal is to extract and exploit pruning in-
formation that is valid only locally in the search tree. The
advantage of Jerusat’s approach is that much more prun-
ing information is retained. However, such an approach re-
quires too much memory, so Jerusat keeps certificates only
for a certain number of decision levels. When it backtracks
out of that window, the certificates are discarded. This
approach has several drawbacks. First, certificates suffer
from the same problems as 1-UIP learned clauses as they
have relatively low pruning information content. Second,
pruning can be much more effective close to the root of the
search tree and therefore discarding certificates that are “out
of the window” can miss the best pruning opportunities.

In recent work [1], we proposed a new pruning tech-
nique, B-cubing (so named because the method goes “be-
yond cubing”), that generalizes supercubing. The prelimi-
nary implementation produced excellent results on numer-
ous benchmark suites, and we provided an informal cor-
rectness argument (as well as running extended regression
tests). We did not, however, have a solid formal understand-
ing of the approach, nor a proof of correctness.

This paper corrects that deficiency. We introduce a new
theory to explain B-cubing, called obligation-certification
trees (OCT), which provides a very general way to under-
stand different pruning techniques. Using this theory, we
can explain B-cubing more clearly and prove the approach
correct. The theoretical understanding also shows that there
are many correct ways to exploit the pruning information
derived from B-cubing, which is likely a fertile area for fu-
ture work.

2 Experimental Motivation

We structure this paper backwards (experiments pre-
ceding theory) because our research proceeded somewhat
backwards: we had developed a SAT solver that performed
well and behaved correctly in extensive regression testing

before we had fully understood the theoretical foundation
of our approach or proven it correct. We have published an
informal explanation of our solver along with experimen-
tal results elsewhere [1]; here, we briefly review the ex-
perimental performance of an implementation of our new
approach compared to a leading solver implementing the
standard approach to state-space pruning.

The data presented here are for the most recent version
of our solver HyperSAT against the most recent version
of ZChaff II (version 2004.5.13, which is noticeably faster
than earlier versions). ZChaff II is one of the best solvers
publicly available, and is based on the standard approach
to state-space pruning (conflict-directed backtracking and
learning). It has been highly tuned and optimized over sev-
eral years of development.

HyperSAT is less mature, although we have tried to op-
timize it and have benefitted from many techniques in the
SAT-solving literature. Beyond B-cubing, HyperSAT has
several characteristics that distinguish it from other contem-
porary solvers. First, it is based on different backtracking
mechanism as explained in [2]. Second, the learned clauses
are aggressively deleted in incrementally increasing, but
bounded, periods. The clauses to be deleted are chosen
according to their length and participation in the conflicts.
Longer clauses that have participated less frequently in the
conflicts are more likely to get deleted. Third, our solver
features extensive equivalence preprocessing, similar to the
March solver [10, 21, 22]. For learning, HyperSAT adds
one learned clause that corresponds to the 1-UIP cut [25]
per conflict to the clause database. HyperSAT is not ran-
domized and does not do restarts. We believe that adding
those two features would increase its robustness.

As test cases, we have chosen nine sets of SAT bench-
marks that reflect the types of SAT instances that arise
in EDA applications. PicoJavaTM instances result from
Bounded Model Checking (BMC) of Sun’s PicoJava IITM

microprocessor3. Second set (IBM BMC) is the encod-
ing of BMC of industrial hardware designs4. The third set
contains the well-known barrel, longmult, and queueinvar
BMC benchmarks from CMU5. Integer factorization is the
encoding of array and Wallace tree multipliers that read two
n-bit prime numbers and generate 2n-bit product6. The fifth
set is SAT encoding of Constraint Satisfaction Problems
(CSP)7. The next four sets were submitted to SAT competi-
tions by Eugene Goldberg and represent BMC, FPGA rout-
ing, equivalence checking, and randomly generated miter
circuit instances8.

3http://www-cad.eecs.berkeley.edu/∼kenmcmil/satbench.html
4http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

Benchmarks/SAT/BMC/description.html
5http://www-2.cs.cmu.edu/∼modelcheck/bmc/bmc-benchmarks.html
6http://www.eecs.umich.edu/∼faloul/benchmarks.html
7http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/benchmarks.htm
8http://www.satcompetition.org/2002/submittedbenchs.html



Benchmark Set ZChaff II HyperSAT

PicoJavaTM BMC (76) 9868 (2) 13635 (2)
IBM BMC (13) 58 81
CMU BMC (34) 5872 935
Int Fact (29) 54470 (10) 11723
CSP (40) 107263 (29) 88990 (21)
Goldberg BMC (10) 1602 4599 (1)
FPGA routing (32) 3803 (1) 715
Eq. check (16) 39701 (10) 51377 (13)
Randnet (48) 74978 (19) 66501 (16)

Table 1. Cumulative Runtimes. Runtimes are in
seconds. The numbers in parentheses are numbers of
problem instances: in the first column, this is the total
number of instances in the set; in the other columns,
this is the number of instances that exceeded the 1
hour timeout.

Table 1 shows cumulative runtime for each benchmark
set. Figure 1 gives scatter plots showing comparative per-
formance on each problem instance. All experiments were
on a 3.2 GHz Pentium 4 with 1MB L2 cache and 1GB
RAM.

Clearly, HyperSAT is competitive with the latest ZChaff
II, with each solver drastically outperforming the other on
some problems. The strong performance on the CSP bench-
marks is particularly promising, as intelligent simulation
testcase generation relies heavily on constraint solving. Hy-
perSAT also reports fewer timeouts overall. In general,
it is valuable to have different approaches with different
strengths: what really matters is solving more problem
instances, not just solving the already-solvable instances
faster.

Given the promising experimental results, we would like
develop a solid understanding of the theory behind our
method, and prove it correct.

3 Theoretical Framework

3.1 Intuitive Overview

A SAT solver works by case-splitting: it assigns a value
to a variable, checks to see if the resulting subproblem is
satisfiable, and if not, tries the other assignment. This case-
splitting naturally corresponds to a search tree that consid-
ers all possible assignments to the variables (Fig. 2).

A key to efficient SAT solving is to derive information
about the problem that can be used to prune the search tree.
For example, conflict-directed learning entails finding a set
of literals that guarantees unsatisfiability. This set can be
used throughout the search tree, so that the solver never
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Figure 1. Scatter Plots. Each problem instance
plots as a point. Each axis is the runtime of the la-
beled SAT solver. Timeouts are plotted at 3600 sec-
onds.



tries to make the exact same assignment again.
Supercubing [19,
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Figure 2. Information from
the left subtree is used in the
right subtree.

9], JeruSAT [17],
and B-Cubing [1]
all seek to exploit
additional pruning
information that
is valid only in
a local part of
the search tree.
The advantage
of keeping some
pruning infor-
mation local to
a node is that
the solver can perform pruning that is only applicable
locally (or, alternatively, that the solver need not store the
context information to determine exactly when the pruning
information is usable, since the context is implicit in the
search tree). Furthermore, the pruning information can be
discarded when it is no longer needed.

To formalize this concept, we develop a framework
where a node in the search tree inherits from its parent the
obligation to prove a part of the search space unsatisfiable.
When it is done, it will return to its parent a certificate that
a (possibly larger) part of the search space was indeed un-
satisfiable. New pruning opportunities arise at the node,
because the certificates returned from exploring one branch
can be combined with the obligations inherited from above
to be used in pruning the other branch.

3.2 Preliminary Definitions

Let V be a finite set of boolean variables (also called
positive literals) and let V ¬ be the set of negative literals
{¬v | v ∈ V }. A literal is an element of V ∪V ¬. We let
bf(V ) denote the set of all boolean functions over V .

A cube (resp. clause) is a conjunction (resp. disjunction)
of literals in which each variable appears at most once. The
empty cube (resp. clause) is identified with the boolean
constant 1 (resp. 0). A minterm is a cube in which each
variable appears exactly once. Conjunctive Normal Form
(CNF) is the standard way to represent boolean formulae
for SAT problems. A formula is in CNF if it is a conjunction
of clauses.

Given a boolean formula f over V , a SAT-solving al-
gorithm explores the space of variable assignments to V ,
and terminates if it finds an assignment that satisfies f , or
determines that no such assignment exists. The set of par-
tial assignments (i.e. cubes) checked during this process
will form a binary search tree. We formalize this notion as
follows.

Definition 1 (search tree) Given variables V , a search
tree (over V ) is a rooted binary tree T with the following
properties. Each non-leaf node u of T is labeled with a vari-
able var(u) ∈ V , and on any path from the root to a leaf,
each x ∈ V may appear at most once. Each non-leaf has
exactly two children, and the outgoing edges are labeled
with 0 and 1.

The 0-child (resp. 1-child) of a node is the node found
by following the outgoing edges labeled 0 (resp. 1). The
root node of search T is denoted root(T ). It follows from
Def. 1 that any subtree of a search tree is also a search tree.
For a node u in a search tree, the u-subtree is the maximal
subtree rooted at u. With each node u, we associate a cube
cube(u) defined recursively as follows. If u = root(T ), then
cube(u) = 1. Otherwise, let u′ be the parent of u. If u is
the 0-child of u′, then cube(u) = cube(u′)∧¬var(u′), else
cube(u) = cube(u′)∧var(u′). To simplify our presentation,
we assume that SAT algorithms always visit the 0-child of
a node before the 1-child; it should be clear that generality
is not lost.

3.3 Obligation-Certification Trees

Let f be an unsatisfiable boolean formula over V and
consider a SAT algorithm A running against f . A con-
structs a search tree T over V , and typically, for each node
u of T , the u-subtree is somehow responsible for proving
that cube(u) → ¬ f . However, pruning techniques exploit
information acquired previously to visiting the u-subtree to
reduce the obligations of the u-subtree. Thus, this subtree
is “given” an obligation φ and is only required to verify
that (cube(u)∧φ) →¬ f . In the course of exploring the u-
subtree, A might actually certify that ψ →¬ f for some ψ
such that (cube(u)∧φ) → ψ , i.e. it at least confirms that
cube(u)∧ φ has no satisfying assignments, but might ac-
tually certify the unsatisfiability of a greater space ψ . The
fact that ψ is, in general, “too big” can in turn be used to
prune in the future.

For example, consider the standard DPLL-style solver
with conflict-directed learning. As the decision heuristic
makes decisions, the solver is essentially constructing a
path in a search tree to a node u, where cube(u) contains all
the decision literals (and their implications) that have been
made so far. The solver will proceed to look for satisfying
solutions by extending the partial assignment of literals in
cube(u), and it cannot claim unsatisfiability until exploring
the entire subspace (thereby proving that cube(u) → ¬ f ).
If the solver deduces a conflict at u, the conflict analysis
procedure finds a subset of the assigned literals that im-
plies the conflict. The conjunction of these literals consti-
tutes a certification ψ of unsatisfiability for cube(u), since
cube(u)→ ψ and ψ →¬ f . Conflict-directed learning con-
sists of reusing ψ to reduce the obligations φ of future



nodes in the search tree: since we know that ψ → ¬ f , we
can restrict future obligations to the space where ¬ψ . In the
standard approach, this is typically implemented by negat-
ing ψ to create a conflict clause, and conjoining that into
the clause database of f .

Now, we formally define a search tree in which all nodes
are labeled with these obligations and certifications:

Definition 2 (obligation-certification tree)
An obligation-certification tree (OCT) for boolean formula
f over variables V is a triple (T,φ ,ψ) where T is a search
tree over V , and φ and ψ are mappings, respectively called
the obligations and the certifications, that map the nodes of
T to bf(V ), such that for all nodes u we have both

cube(u) → (φ(u) → ψ(u)) (1a)

ψ(u) →¬ f (1b)

Condition (1a) states that the certification ψ(u) must cover
the entire obligation φ(u), when restricted to the appropri-
ate part of the search space defined by cube(u). Condi-
tion (1b) guarantees that ψ(u) really is a certification of
unsatisfiability.

Theorem 1 There exists an obligation-certification tree
(T,φ ,ψ) for boolean formula f such that φ(root(T )) = 1
iff f is unsatisfiable.

Proof: If f is unsatisfiable, it is trivial to construct a suit-
able OCT, e.g. a single node u with φ(u) = ψ(u) = 1.
Conversely, since cube(root(T )) = 1, (1a) implies that
ψ(root(T )) = 1, which along with (1b) imply that f is un-
satisfiable.

�

Theorem 1 gives no insight about how to construct the
obligations and certifications. The value of Theorem 1 is
that any algorithm that constructs, explicitly or implicitly,
an OCT T with φ(root(T )) = 1, for all unsatisfiable input
formulas, is correct.

Theorem 2, below, formalizes the intuition from Sec-
tion 3.1 to suggest a localized (in the search tree) approach
to constructing obligations and certifications. The theorem
states that any search tree satisfying constraints (2a), (2b),
and (2c) on φ and ψ is indeed an OCT. Intuitively, (2a)
states that the obligations of the 0-child must cover those
obligations of the parent involving the negative literal, and
(2b) requires that the obligations of the 1-child must cover
at least the obligations of the parent involving the positive
literal that were not covered by the certifications of the 0-
child. (2c) simply states that a node certifies exactly the
union of the certifications of its two children.

Theorem 2 Let T be a search tree and f a formula over
V , and let φ and ψ be mappings that take the nodes of T

to bf(V ), such that for all nodes u, if u is a leaf we have
(1a) and (1b), otherwise, letting u0 and u1 respectively be
the 0-child and 1-child of u, we have

(φ(u)∧¬var(u)) → φ(u0) (2a)

(¬ψ(u0)∧φ(u)∧ var(u)) → φ(u1) (2b)

ψ(u) ↔ (ψ(u0)∨ψ(u1)) (2c)

Then (T,φ ,ψ) is an OCT.

Proof: Let u be any node of T , and let T ′ be the u-subtree
of T . We prove by induction on the height of T ′ that (1a)
and (1b) both hold of u. In the base case, T ′ is a single leaf
node u, in which case (1a) and (1b) hold of u by the premise
of the theorem statement.

Now let T ′ be an OCT with root u and 0-child u0 and
1-child u1. Letting x = var(u), by the inductive hypothesis,
we have all of:

(cube(u)∧¬x) → (¬φ(u0)∨ψ(u0)) (3a)

ψ(u0) →¬ f (3b)

(cube(u)∧ x) → (¬φ(u1)∨ψ(u1)) (3c)

ψ(u1) →¬ f (3d)

(1b) follows easily from (3b), (3d), and (2c). To see that
(1a) holds, observe

(3a) ⇒(cube(u)∧¬x) → (¬(φ(u)∧¬x)∨ψ(u0)) by (2a)
≡ (cube(u)∧¬x) → (¬φ(u)∨ x∨ψ(u0))
≡ (cube(u)∧¬x) → (¬φ(u)∨ψ(u0))
⇒(cube(u)∧¬x) → (ψ(u0)∨¬φ(u)∨ψ(u1))

Similarly,

(3c) ⇒ (cube(u)∧ x) → (ψ(u0)∨¬φ(u)∨ψ(u1))

And thus we have

cube(u) → (¬φ(u)∨ψ(u0)∨ψ(u1))
≡ cube(u) → (¬φ(u)∨ψ(u)) by (2c)

�

4 B-Cubing

4.1 Abstract Algorithm

We can now present a very general, abstract version of
our algorithm, and prove its correctness.

Roughly, for a nonleaf node u in the search tree, a con-
straint B(u) is constructed while visiting the 0-branch of
u, and B(u) is subsequently used to reduce the obligations
(i.e. prune) while exploring the 1-branch. At a leaf � of the
search tree followed by our algorithm, a certification cube
(CC) ψcc(�) is constructed such that cube(�) → ψcc(�).



For any nonleaf u, let leaves0(u) be the set of descendant
leaves under the 0-branch of u. Now B(u) is built from
the CCs found in leaves0(u). Each CC ψcc(�) that doesn’t
contain the literal ¬var(u) also certifies the corresponding
space under the 1-branch of u. Thus, B(u) involves the
CCs in leaves0(u) that do contain ¬var(u), since these over-
approximate the subspace under the 1-branch that cannot
be proven unsatisfiable using the CCs found in ψcc(�). For-
mally, we have the following

Definition 3 (B-cube) Let u be a nonleaf node in a search
tree that has leaves labelled with certification cubes, let
x1, . . . ,xk be the list of all variables found in cube(u), and
let x = var(u). Then the B-cube of u is defined9

B(u) = ∃x1, . . . ,xk,x :
∨

w∈leaves0(u) and ψcc(w)→¬x

ψcc(w)

B(u) disjoins all CCs found under the 0-branch of u that
contain ¬x, and quantifies out x along with all variables
above x in the search tree. Note that it is possible that B(u)
is the empty disjunction, which is, as usual, defined to be 0.
Using B(u) to reduce the obligations under the 1-branch is
a sound pruning technique as long as a certain subsumption
exists in the inherited obligations.

We abstract optimizations such as learned clauses and
boolean constraint propagation, as well as what is inferred
about obligations and construction of CCs, through a mech-
anism we call a deduction oracle, denoted 
. We write 
 θ ,
where θ is any formula, to indicate that the solver is able to
determine that θ is a tautology (i.e., θ is logically equiva-
lent to 1). We require only that 
 satisfy the following two
properties:

Property 1 (Soundness) If 
 θ , then θ is a tautology.

Property 2 (Minterm evaluation) For any minterm m
and any formula f , either 
m → f or 
m→¬ f must hold.
In other words, the deduction oracle must at least have the
ability to determine if a total assignment (i.e. minterm) sat-
isfies or falsifies f .

Algorithm 1 presents the recursive procedure SAT-
SOLVE, which takes a formula f , a cube cube, and an obli-
gation φ , and either returns a certification ψ , or exits. The
parameter cube is the current partial assignment; an invoca-
tion SAT-SOLVE( f , cube, φ ) is responsible for determining
if f ∧cube∧φ is satisfiable. We will see that the execution
trace of any invocation of SAT-SOLVE (that doesn’t exit)
is an OCT; the obligation at an invocation is the actual pa-
rameter φ passed in, and the certification is the return value
ψ . It is important to note that our implementation does not

9Note that the B-cube is in general not a cube. Supercubing is an in-
stance of our theory in which B(u) is further over-approximated by a single
cube.

build these certifications explicitly; they are made explicit
in Algorithm 1 to facilitate the proof of correctness, i.e. the
proof that the algorithm implicitly builds an OCT (see The-
orem 3).

Algorithm 1 An abstract rendition of our SAT-solver,
which utilizes B-cubes to prune the search tree.

1: procedure SAT-SOLVE( f , cube, φ )
2: if 
 cube → f then
3: exit(SAT)
4: else if 
 ¬φ then
5: return(0)
6: else if 
 ψcc → ¬ f for some cube ψcc such that

cube → ψcc then
7: return(ψcc)
8: else
9: let x be some variable not in cube

10: ψ0 := SAT-SOLVE( f , cube∧¬x, φ ∧¬x)
11: if 
 [φ ]x=1 → [φ ]x=0 then
12: ψ1 := SAT-SOLVE( f , cube∧ x, φ ∧ x∧B)
13: else
14: ψ1 := SAT-SOLVE( f , cube∧ x, φ ∧ x)
15: end if
16: return(ψ0 ∨ψ1)
17: end if
18: end procedure

SAT-SOLVE only exits (line 3) if the deduction oracle
can determine that cube satisfies f . Otherwise, lines 4–7
correspond to leaf nodes, which return some sort of CC.
Lines 9–16 are the recursive case. Note that Algorithm 1
adheres to our simplifying assumption that the 0-branch is
always explored first; our implementation is of course more
sophisticated and chooses the phase heuristically. Line 9
abstracts any decision heuristic. Because of Property 2 of
the deduction oracle, if all variables are present in cube,
either line 3 or 7 would have been reached, hence an unas-
signed variable will always exists at line 9. Line 11 uses
the notation [φ ]x=b, where b ∈ {0,1}, to denote φ restricted
to x = b. Line 11 tests if [φ ]x=0 subsumes [φ ]x=1. If the
deduction oracle can ascertain that this implication holds,
the B-cube of the current invocation may be used to prune
when exploring the 1-branch.10 B denotes B(u), where u is
the current node of the search tree.

Theorem 3 If the call SAT-SOLVE( f ,1,1) does not re-
sult in exit(SAT), then the call tree T represents an OCT
(T,φ ,ψ).

Proof: We show that for each node u of T , the u-subtree,
along with the restrictions of φ and ψ to the nodes of the

10This subsumption is a technical requirement for correctness of B-cube
pruning and is employed in the proof of Theorem 3 .



subtree, is an OCT for f . To this end, we show by induction
on the height of the u-subtree that u satisfies the conditions
of Theorem 2. For the base case, u is a leaf and thus cor-
responds to an invocation in which either lines 5 or 7 is
reached. In either case, (1b) and (1a) are both easily seen
to hold.

For the inductive step, suppose u is a non-leaf with 0-
child u0 and 1-child u1, and let x = var(u). From line 10 we
see that φ(u0) is precisely φ(u)∧¬x, thus (2a) holds. Also,
(2c) obviously holds thanks to line 16.

To prove (2b) requires a case split on whether line 12
or 14 is the invocation of u1. For the latter case, we note
φ(u1) = φ(u)∧x, hence (2b) trivially holds. Now suppose
that line 12 is the invocation of u1. Then

φ(u1) = φ(u)∧ x∧B(u) (4)

Let C be the set of CCs in the u0-subtree that contain ¬x,
and let C′ be the set of those that do not contain ¬x; in a
slight abuse, we will identify these sets with the disjunc-
tions of their constituent cubes. We may hence write

B(u) = ∃x1, . . . ,xk,x : C (5)

where x1, . . . ,xk is the list of variables in cube(u). Clearly,
because of lines 5, 6, and 16, we have ψ(u0) ≡ (C ∨C′),
and therefore

(¬C′ ∧ψ(u0)) →C (6)

We also note that for any node w we have φ(w)→ cube(w),
since this trivially holds for w = root(T ), and if it holds at
a node, then it will hold for any children also, regardless of
which of lines 10, 12, or 14 were invoked for the recursive
call. Thus we may write φ(u0) → cube(u0). Now, by our
inductive hypothesis, the tree rooted at u0 is an OCT, thus
cube(u0) → (φ(u0) → ψ(u0)) and hence we have

φ(u0) → ψ(u0) (7)

Now we show (¬ψ(u0)∧φ(u)∧x)→B(u) through the fol-
lowing logical derivation.

¬ψ(u0)∧φ(u)∧ x assumption
≡ ¬C∧¬C′ ∧φ(u)∧ x since ¬ψ(u0) ≡ (¬C∧¬C′)
≡ ¬C′ ∧φ(u)∧ x since x →¬C
⇒ ¬C′ ∧ [φ(u)]x=1
⇒ ¬C′ ∧ [φ(u)]x=0 since line 11 condition passed
≡ ¬C′ ∧ [φ(u0)]x=0 since φ(u0) ≡ φ(u)∧¬x
⇒ ¬C′ ∧ [ψ(u0)]x=0 by (7)
≡ [¬C′ ∧ψ(u0)]x=0 since C′ independent of x
⇒ [C]x=0 by (6)
⇒ ∃x : C
⇒ ∃x1, . . . ,xk,x : C
≡ B(u) by (5)

Thus we have (¬ψ(u0)∧φ(u)∧x)→B(u), which, along
with (4), yields (2b).

�

Corollary 1 The call SAT-SOLVE( f ,1,1) results in
exit(SAT) if and only if f is satisfiable.

Proof: If exit(SAT) occurs, then the condition of line 2
held for some cube, and thus cube represents a satisfy-
ing subspace for f . Conversely, if exit(SAT) does not oc-
cur, then by Theorem 3, the call tree T represents an OCT
(T,φ ,ψ). Since φ(root(T )) = 1, by Theorem 1 f is unsat-
isfiable.

�

4.2 Concrete Implementation

We now turn to the correctness of the algorithm we ac-
tually implemented. Details of HyperSAT’s implementa-
tion are available elsewhere [1], but the main difficulties
we faced when building HyperSAT were how to integrate
learning and other pruning techniques with B-cubing or su-
percubing, and how to correctly maintain a small and effi-
cient approximation of the B-cube.

Given the proof of correctness for the abstract algorithm,
it is easy to prove the algorithm in our implementation cor-
rect. All of the details of learning and Boolean constraint
propagation are handled via the deduction oracle. As long
as the optimizations are sound (correct propagation of con-
straints and correct learning), the proof from the preceding
section still holds.

Similarly, for practical efficiency, we developed a data
structure to represent approximations of B-cubes. We in-
vested considerable effort in making this data structure ef-
ficient, which complicated our understanding of the algo-
rithm. With the theoretical framework, however, we sim-
ply note that our data structure is an overapproximation of
the B-cube, and the proof of Algorithm 1 still holds. Note
that since supercubing further overapproximates B-cubes,
we have also proven the correctness of supercubing, with
or without integration with conflict-directed learning.

Obviously, different implementation choices can differ
greatly in performance, but the algorithmic correctness is
assured. Freed from worrying about the details of correct-
ness, we can hopefully consider much more subtle perfor-
mance optimizations.

5 Conclusions and Future Work

We have presented a broad theoretical framework for un-
derstanding pruning in SAT solvers, as well as a general-
ized, abstract version of our B-cubing pruning algorithm,
which we have proven correct. Using this theory, we can
more simply understand and prove the correctness of the al-
gorithm in our new SAT solver. Experimental results show
that our solver is competitive with one of the best current



solvers, and often outperforms it, on a wide range of bench-
marks.

Given the generality of our theory, considerable future
work is possible in exploring other pruning techniques per-
mitted by the theory. Obvious directions are better de-
duction oracles, exploring more general techniques in the
gap between Theorem 2 and B-cubing, and finding more
efficient ways to implement approximations of B-cubing.
For example, HyperSAT curently uses the last cut in the
implication graph, which contains only decisions, to con-
struct certification cubes. Conversely, 1-UIP learning [25]
makes the cut very close to the conflict. There’s a whole
range of possible cuts in between those two extremes. In
general, the challenge is to find how to exploit the abun-
dance of information that can be learned from the con-
flicts efficiently. Having a theoretical framework that al-
lows correctly combining techiques that store global infor-
mation (e.g., conflict-driven learning), via the deduction or-
acle, and techniques that implicitly store the context (e.g.,
supercubing, B-cubing), via obligation-certification trees,
provides a sound foundation to build on.
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