
Efficient SAT Solving: Beyond Supercubes ∗

Domagoj Babić Jesse Bingham Alan J. Hu

Department of Computer Science, University of British Columbia

{babic, jbingham, ajh}@cs.ubc.ca

ABSTRACT
SAT (Boolean satisfiability) has become the primary Booleanrea-
soning engine for many EDA applications, so the efficiency ofSAT
solving is of great practical importance. Recently, Goldberg et al.
introducedsupercubing, a different approach to search-space prun-
ing, based on a theory that unifies many existing methods. Their
implementation reduced the number of decisions, but no speedup
was obtained. In this paper, we generalize beyond supercubes, cre-
ating a theory we callB-cubing, and show how to implement B-
cubing in a practical solver. On extensive benchmark runs, using
both real problems and synthetic benchmarks, the new technique is
competitive on average with the newest version of ZChaff, ismuch
faster in some cases, and is more robust.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided Design;
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—backtracking, graph and tree search strategies

General Terms
Algorithms, Verification

Keywords
SAT, formal verification, learning, search space pruning

1. INTRODUCTION
The problem of satisfiability of boolean formulas (SAT) is a

well-known NP-complete problem. In short, given a boolean func-
tion f , one needs either to find a satisfying assignment or to prove
that such doesn’t exist. SAT has been intensively used in many do-
mains. Our focus is the application of SAT to structured problems,
especially those resulting from EDA domain, like model checking
(bounded [5] and unbounded [13]), FPGA routing [16], and ATPG

∗This work was supported in part by a research grant from the Nat-
ural Sciences and Engineering Research Council of Canada and
graduate fellowships from the University of British Columbia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005,June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

[19]. Such industrial applications require complete SAT solvers,
meaning that the solver must be capable of proving that a problem
is either satisfiable or definitely unsatisfiable.

Since the early days of SAT solving [7], it was clear that the ef-
ficiency of SAT solvers depends heavily on search space pruning
rules and decision heuristics. Decision heuristics have received a
fair amount of attention in the literature [10, 3, 22]. Although some
limited success has been achieved, many proposed heuristics are
extremely sensitive to chosen parameters, and strongly dependent
on the details of implementation of the rest of the solver1. In gen-
eral, the heuristics tend to perform well only on a restricted set of
problems.

On the other hand, in spite of the obvious relation between prun-
ing rules and performance of SAT solvers, there exists only ahand-
ful of SAT pruning techniques. Even fewer are actually used in
modern SAT solvers. Learning and conflict directed backtracking
are probably the most well known, and work quite well. Inventing
new pruning techniques for DPLL solvers is encumbered by the
requirements for compatibility with the DPLL framework andex-
isting pruning techniques. In addition, the savings achieved must
justify the additional cost.

1.1 Existing Pruning Techniques
Boolean Constraint Propagation (BCP) and the Pure Literal Rule

(PLR)2 were proposed in [7]. Modern SAT solvers have efficient
BCP engines for detection of unit clauses, propagation of unit lit-
erals, and conflict detection. A major step forward in SAT solving
was the invention of lazy algorithms for BCP based on head/tail
lists [22] and watched literals scheme [14].

The literals which appear in boolean formula with only one phase
are called pure literals. According to PLR, all the clauses that con-
tain pure literals may be eliminated. PLR is considered to betoo
expensive to be performed on every step in SAT solving, as exact
counters of appearances of each literal need to be maintained. As
it will be explained later, B-cubing subsumes PLR. So, our exper-
imental solver HyperSAT uses PLR only during the preprocessing
step and implicitly through B-cubing.

When a conflict is detected, the solver finds the reason for the
conflict and tries to resolve it. The simplest method is to backtrack
to the last decision variable which hasn’t been explored with both
phases, flip its current assignment, and proceed with the search. A
more elaborate method is to analyze the conflict and backtrack to
the decision variable that is actually responsible for the conflict.
This scheme is called Conflict-Directed Backtracking (CDB)and
GRASP [12] was the first SAT solver to implement it.

1Mainly clause database organization, learning mechanism,and
preprocessing.
2PLR was called Affirmative-Negative Rule in the original paper.

Learning goes hand-in-hand with conflict-directed backtracking.
Different solvers feature different learning strategies and clause
deletion schemes. One thing in common is that they all traverse
the implication graph in the reverse direction and add clauses that
correspond to different cuts in the graph [23]. From experimen-
tal results [23] it seems that adding a clause that corresponds to
the cut made before the first Unique Implication Point (1-UIP) is
a better choice than other cuts proposed so far. Those results have
recently been challenged by a suggestion that adding intermediate
clauses that correspond to the cuts made closer to the conflict might
perform better [18], but no experimental results were given. For a
more extensive introduction into CDB and learning, and an exhaus-
tive list of references, the reader is referred to [24].

Although much work remains to be done, it is clear that learning
schemes proposed so far can use only a fraction of the information
inferable from conflicts. The limiting factors are memory require-
ments and computation time required for reasoning. For example,
due to memory constraints, it is impossible to add all the clauses
that can be learned to the clause database. Similarly, some reason-
ing techniques, like hyper-resolution [2], have been shownto be
computationally too expensive to be performed at every stepdur-
ing SAT solving.

Recently, a theory of essential points [17, 9] has been proposed.
The theory unifies many existing search space pruning schemes
(like PLR, CDB, and learning) under a single theoretical framework
and serves as a tool for developing new pruning techniques. Anew
pruning technique calledsupercubingwas proposed as an example
of application of the theory of essential points. Their solver was
a proof of concept, and although supercubing reduced the num-
ber of decisions, no actual speedup has been reported. Subsequent
work [1] pointed out that supercubing is not readily compatible
with learning and proposed an alternative backtracking andlearn-
ing scheme to integrate supercubing and learning. The reported
performance results of the solver were comparable to an earlier ver-
sion of ZChaff (v2003.11.04)[14].

1.2 Contributions
In this paper, we generalize the theory of supercubing to intro-

duce a new search-space pruning technique, performing a farmore
elaborate conflict analysis and moving beyond cubes as a way to
store knowledge of learned conflicts. The theoretical ideal, which
we dub B-cube, will blow up in space on practical problems, sowe
introduce a data structureBoolean Constraint Treesfor compactly
representing a safe approximation of the ideal B-cubes. Thenew
technique can be made compatible with learning, but it requires
significant modifications of the backtracking and decision making
mechanisms, as in [1]. We have implemented our new technique
in an experimental solver HyperSAT, which features both learning
and B-cubing. Although HyperSAT is in its infancy, we reporten-
couraging results and show that it can compete with leading-edge
solvers like the newest version of ZChaff [14] on a wide rangeof
problems.

2. NEW PRUNING TECHNIQUE
We start with some basic definitions, and continue with explana-

tions of supercubing and B-cubing. The proofs are omitted, as the
space constraints do not permit the presentation of the entire theo-
retical framework on which the proofs are based. We assume some
basic familiarity with modern DPLL-based SAT solvers.

Let B = {0,1}, and letV be a finite set of boolean variables. A
literal is denoted byxb, wherex∈ V andb∈ B. Define0̄ = 1 and
1̄ = 0, then we say that the literalxb̄ is obtained byflipping xb.

A cube(clause) is a conjunction (disjunction) of literals in which

each variable fromV appears at most once. Aminterm(also called
an assignment) is a cube in which each variable appears exactly
once. The set of all minterms is denoted byM. A CNF formulais a
conjunction of clauses. Forx∈ V and a cubec, we writeflip(c,x)
to denote the cube formed by flipping thex-literal of c (if it exists),
and for a set of cubesS, we defineflip(S,x) = {flip(c,x) | c∈ S}.

We assume a simple SAT solver which systematically exploresa
search tree without restarts or CDB, and the solver’s input is a CNF
formula ϕ. We useT to denote the binary search tree traversed
by the solver3. The nodes ofT are labeled with variables ofV .
A decisionis a node inT that has two children, the0-child and
1-child, that correspond respectively to assigning 0 and 1 to the
decision’s variable. For a decisiond andb∈ B , we letdb denote
the subtree ofT rooted at theb-child of d.

Assumingϕ is not satisfiable, the leaves ofT are calledconflicts.
Both supercubing and B-cubing require the solver to construct a
decision conflict clause(DCC) whenever a conflict is encountered.
A DCC contains all the decision variables involved in the conflict,
and is typically computed by traversing the implication graph back-
wards until the resolvent contains only decision literals [22]. The
negation of a DCC is a cube (via an application of DeMorgan’s
Law) that we will call acertificate(of unsatisfiability) and denote
by cert(u), whereu is a conflict node inT. The certificatecert(u)
has the property that no mintermm such thatm→ cert(u) will sat-
isfy ϕ.

Consider a decision noded for variablex, and the certificates en-
countered when exploringdb for someb ∈ B. Note that for any
such certificatec, c may or may not containxb, but c certainly
doesn’t containxb̄. We are interested in those certificatesc that
involve xb.

Definition 1. The set of all conflict nodes found indb that in-
clude the literalxb will be denotedAb(d), wherex is the variable of
d.

Definition 2. Suppose that there are no satisfying assignments
in db. TheB-cubeis then defined as a set of certificatesBb(d) =
{cert(u) | u∈ Ab(d)} and we also defineB∗

b(d) = flip(Bb(d),x),
wherex is the variable ofd.

Definition 3. LetSb(d) be the set of minterms defined bySb(d) =
{

m∈ M | m→ c for somec∈ B∗
b(d)

}

THEOREM 1. Suppose db has no satisfying assignments. Then
for any minterm m found in db̄ that satisfiesϕ, we have m∈ Sb(d).

Supercubing and B-cubing are pruning techniques that both ex-
ploit Theorem 1 in the following manner. While exploringdb, some
over-approximationS′ of Sb(d) is computed4. Then, while explor-
ing db̄, attention is restricted to the assignments ofS′; i.e. assign-
ments indb̄ that are not inS′ are pruned. The difference between
supercubing and B-cubing is that the latter’s over-approximation
is a tighter fit than the former’s, hence B-cubing allows for more
pruning.

2.1 Supercubing
Supercubing over-approximatesSb(d) using a single cube, de-

fined as follows. The supercubescb(d) is the least cube that sub-
sumesSb(d), i.e. scb(d) is the conjunction of all literals̀ such that
Sb(d) → `.
3For brevity, we leaveT formally undefined in this paper.
4To be more precise,S′ need only over-approximate the intersec-
tion of Sb(d) with the subspace corresponding todb̄.

Example 1.Suppose decisions in the search tree are (in order)
x0

1,x
1
2,x

0
3, and letd be the decision node forx3. The solver explores

the search subtreed0 (i.e. x0
3) and finds no solution. In the process

of exploringd0, the following five certificates are constructed:

c1 = x1
2∧x1

4
c2 = x0

3∧x0
4∧x0

5∧x1
6

c3 = x0
1∧x0

5∧x0
6

c4 = x1
2∧x1

5∧x1
6

c5 = x0
1∧x0

3∧x0
4∧x1

5∧x0
6

Here we have thatB0(d) = {c2,c5}, and the least cube that cov-
ersB0(d) is sc0(d) = x0

3 ∧ x0
4. Hence, sinceflip(sc0(d),x3) over-

approximatesS0(d), in the subtreed1 (i.e. after flippingx3 to 1),
the solver can immediately assignx0

4.

The implementation of supercubing stores an array representing
a supercube for each decision variable. Storing supercubesis not
memory demanding, as the average size of the supercube per de-
cision node is small (density of supercubes, [1]). Also, since deci-
sions aboved are the same in bothd0 andd1, such variables need
not be stored in the supercube, which reduces space requirements
further.

Supercubing can prune the search space that can’t be pruned by
learning, as explained in [9]. An algorithm for computing super-
cubes and a thorough discussion of the integration of supercubing
and learning are given in [1].

2.2 B-cubing
Going back to Example 1, the solver can immediately assignx0

4
afterx1

3, but then there are no more literals that are common to all
certificates ofB0(d). However, there is avariable that appears in
all certificates inB0(d), and that isx5. So the solver can choose
x5 as a new decision variable. Ifx1

5 is chosen, we can immediately
assignx0

6, since assignments in the spacex1
3∧x1

5∧x1
6 have already

been certified to be unsatisfying byc4. Similarly, after pickingx0
5,

the variable assignmentx1
6 can be immediately asserted. In this

manner, only assignment ofS0(d) are considered afterx3 has been
flipped, which is a legal pruning thanks to Theorem 1.

The fact that more information can be learned from certificates
was first observed by Nadel [15] and implemented in Jerusat SAT
solver. It seems that Jerusat keeps all the certificates and does the
analysis when a new decision is needed. Needless to say, such
an approach requires a huge amount of memory and it is infeasi-
ble even for moderately large problems. For that reason, Jerusat
seems to keep certificates only for certain number of decision lev-
els. When it backtracks out of the window, it discards certificates.
This approach has several serious drawbacks.

First, certificates contain a significant amount of redundant in-
formation. In Example 1, certificatesc1 andc2 both contain infor-
mation that onlyx0

4 needs to be explored after flippingx0
3. Clearly,

if we had a suitable data structure to represent the corresponding
B-cube, less memory would be required.

Second, discarding certificates means that the search spacewill
be less constrained and therefore more search will be needed. This
is especially serious when the certificates are discarded for decision
nodes close to the root of the search tree. For example, if theroot
decision node contains three literals in its supercube (or in the stem
of its BCT data structure, as will be explained later), afterflipping
the root node, the supercube would ideally reduce the searchspace
eightfold.

An advantage of the Jerusat approach is its simplicity. If all the
conflicts are kept (within the predefined window), the reasoning

procedure can be entirely implemented inside the decision engine.
The technique we are proposing requires substantial changes in the
backtracking mechanism, conflict analysis, and decision engine.

When it comes to the integration of B-cubing and learning, one
runs into the same compatibility problems as with supercubing.
This problem has been extensively discussed in [1].

3. APPROXIMATION OF B-CUBES
As mentioned before, keeping all the conflicts (i.e. entire B-

cube) is not an option. Hence, we need to find a more compact, ap-
proximate representation that keeps as much relevant search space
pruning information as possible. BDDs [6] or ZBDDs [11], per-
haps with heuristic approximation techniques, certainly come to
mind. Standard decision diagrams, however, are not suited for the
task. In particular, a key advantage of SAT is the ability to have dif-
ferent decision orders along different parts of the search,meaning
that the data structure must efficiently handle different variable or-
ders for different certificates, ruling out standard ordered decision
diagrams. We have chosen instead to create a more appropriate
data structure loosely based on decision trees [8] that is specifically
designed to efficiently support the operations we need.

Let’s consider some of the key properties of the DPLL algorithm
and try to picture an ideal B-cube that would be of the greatest use
for search space pruning. The SAT search tree is a binary tree,
in which decision nodes have two outgoing edges5, and implied
nodes have one. Ideally, our new pruning technique would provide
the solver with a large number of literals that can be immediately
assigned after flipping some decision variable. Obviously,such lit-
erals would need to be present in all the certificates, so we will call
themsupercubed literals. The more supercubed literals we have,
the higher the probability that more unit clauses will be generated,
increasing the chances for quick conflict detection. Thus the first
desired property is to have as many supercubed literals as possible.

After supercubed literals are removed from certificates, there are
no more common literals, but there might be common variables.
Common variable can be used to sort the certificates in two classes
according to the phase of the corresponding literal. By recursively
applying the partitioning and searching for common literals and
variables we obtain a binary tree. This tree represents an approxi-
mation of the set of all certificates in a compact manner. The case
when there are no common variables is more complicated.

Example 2.Supposex1 is the variable of the rootr of the search
tree, and the B-cubeB0(r) is the set

{

x0
1∧x0

2∧x1
3,x

0
1∧x0

2∧x0
4,x

0
1∧

x0
2∧x1

5

}

. After flipping x0
1, the solver can assign the supercubed

variablex0
2. At this point we know that eitherx1

3 or x0
4 or x1

5 need
to be explored. Whichever choice the solver makes, it might need
to backtrack later to that choice and try the remaining ones.Faced
with a multiway choice, the solver would need some heuristicto
determine the order of choice exploration. Choosing the next deci-
sion variable from the priority queue might be a better option.

As there is no clear intuition about whether multiway nodes would
actually improve performance, and because multiway nodes are not
easily added on top of DPLL, an approximation of the B-cube could
simply discard such literals.

If the B-cube is approximated by a binary tree, the stem of the
tree clearly contains supercubed variables and corresponds to a su-
percube. As it has been proven in [9], supercubing subsumes PLR.
From the fact that such an approximation of B-cubing contains all
supercubed literals as a stem, it follows that the approximation also
subsumes PLR.
5Except for the nodes skipped over during CDB.

3.1 Boolean Constraint Trees
Boolean Constraint Trees (BCTs) are presented in this section as

an approximation of B-cubes.

Definition 4. A Boolean Constraint Treeis a rooted binary tree
such thatbranch nodesare labeled with a variable and have two
outgoing edges.Literal nodesare labeled with a literal and have
one outgoing edge. Any variable can appear at most once on a
path from the root to a leaf. Given a BCTC, the prefix of node
x is defined to be the cube of literals on the path from the root
of the BCT to the nodex and denoted byprefC(x). A leaf node
can be either a literal node or atermination node. A termination
node t is always a child of a branch node and marks that there
were at least two certificates containing cubeprefC(t), but no other
common literals or variables.

There are two simplification rules for BCTs. A branch node with
both children being termination nodes contains no useful informa-
tion and can be discarded. The second rule says that two adjacent
branches cannot contain equal literals. Such literals mustbe in-
serted above the branch as they are common to both paths.

h

g

e

c

X

X

g0

b0 f0

j1

i1

i1

a1

d1

Figure 1: Boolean Constraint Tree

Example 3.A BCT C is given in Fig. 1. Shaded nodes are
branch nodes. Dotted edges denoteFALSE branches. Termination
nodes are depicted asX. Prefix of nodee is prefC(e) =

[

j1,h1, i1
]

.
Literal j1 was common to all certificates. Variableh was also com-
mon to all certificates. Variableg was common to all the certificates
that includedh0, and so on.

The construction of BCTs goes as follows. The algorithm finds
the longest path in the currently constructed BCT on which all the
literals correspond to the new certificate. The literals that have no
match in the certificate are removed from the BCT and pushed ona
stack. When a leaf node is reached, the algorithm checks whether
there was at least one matching variable between those eliminated
literals, and creates a new branch if there was. Otherwise, all the
literals from the stack get discarded. Hence, new nodes are added
to a BCT only if a new branch is created. In all other cases, adding
a new certificate prunes the BCT.

BCTs can grow quite large. To reduce the memory requirements
and speed up the BCT construction process, we set the limit on
the maximum number of nodes that a BCT can contain. Setting
the limit is achieved by disallowing the creation of new branches,
while BCT pruning is still allowed as it always reduces the size.
The limit for our experiments was set to 2000 nodes.

B-cubing interacts with decision heuristic and learning. Super-
cubed literals are always welcome, as they increase the probability
of creation of new unit literals and do not create new branches in
the search tree. Suppose that the search procedure has assigned all

the supercubed and implied literals, and has reached a branch node
x in the BCT. According to our heuristic, the search will choose
the more constrained branch ofx by checking the next couple of
nodes. In the case when BCT is very branchy, none of the nodes
that follow will actually prune the search space. Even worse, just
picking the next variable with the highest priority might perform
better. For that reason, we also set the limit on the maximum per-
centage of branch nodes in the BCT. The limit was set to 40% for
our experiments. Growth limits are empirically established values.
If the number of nodes in the BCT is larger than the given limit, a
special restrictive construction mode is entered in which new cer-
tificates do not increase the BCT size.

An important property of our algorithm is that it delays the cre-
ation of branches as long as possible. The resulting BCTs tend to
have longer chains of literal nodes closer to the root while branch
nodes are pushed closer to leaves. Such BCTs prune the search
space more efficiently.

3.2 Search Space Pruning
A BCT can be seen as a blueprint of the search space that needs

to be explored. Suppose the search has just flipped a decisionand
that the assignment generates a certain number of unit literals. First
unit literals will be propagated. Next, if no conflict is found, our
procedure will traverse the corresponding BCT, propagating newly
generated unit literals aggressively after each new decision. When
traversing the BCT, the search procedure might run into nodes al-
ready assigned as unit literals. If such a literal node matches the
current assignment, it is skipped over, otherwise it is deemed to be
a conflict. When a branch node is assigned, the edge to be followed
is chosen depending on the current assignment.

Our experiments show that the search procedure rarely traverses
the entire BCT. Therefore, large BCTs just slow down the search,
while the percentage of used nodes is low. This motivates ourde-
cision to discard multiway nodes and set BCT growth limits.

Our B-cube pruning technique islocal in the sense that it applies
knowledge gained from conflicts in the first branch of a node to
pruning in the second branch. The gained knowledge cannot be
applied to arbitrary parts of the search tree. Learning doesn’t have
this limitation, but it is less effective in pruning the search space
locally.

4. HYPERSAT
Our experimental HyperSAT solver is based on a simple watched

literal scheme as implemented in LIMMAT [4], with some minor
optimizations and extended to support equivalence clauses. Pre-
processing eliminates unit and pure literals, detects tautologies and
binary equivalences. Equivalence clauses are detected andreduced
as described in [20, 21]. The clause cache is initially set tostore
213 clauses, and enlarged as needed. The 1-UIP learning scheme is
used and the deletion strategy is very aggressive - half the clauses
get deleted every time the cache is enlarged. The clauses to be
deleted are chosen according to their size and number of occur-
rences in conflicts. Larger clauses that appear less often are deleted
first. The solver is not randomized and it doesn’t use restarts. The
weakest point of our solver is a very simple and fragile implemen-
tation of VSIDS [14]. Also, only the preprocessor and BCP are
optimized for performance so far. Our priority is to optimize other
parts of HyperSAT, find a new heuristic which suites the specific
search dynamics of the solver, and do memory optimization.

5. EXPERIMENTAL RESULTS
We have chosen eight benchmark sets for empirical evaluation

of our new pruning technique. The sets represent typical practical
applications of SAT with an emphasis on EDA problems. The Pico-
Java instances result from Bounded Model Checking (BMC) of the
Sun PicoJava IITM microprocessor.6 The second set (IBM BMC)
is an encoding of BMC of real industrial hardware designs.7 The
third set contains the well-known barrel, longmult, and queueinvar
BMC benchmarks from CMU.8 The next three sets are all from
Fadi Aloul9 and represent SAT encodings of FPGA routing and
integer factorization problems. The seventh set is a SAT encod-
ing of Constraint Satisfaction Problems (CSP).10 Only three sub-
sets (frb30,35,40) were used from this set, as no solver could
solve the remaining ones. The last set is therule 1 subset from
IBM Formal Verification Benchmarks Library without thek100
instances.11 The number of instances in each set is given in paren-
theses after the name of the set.

All experiments were done on a 2.6 GHz Pentium 4 machine
with 3 Gb of memory. ZChaff II version 2004.5.13 running times
are given for comparison. The timeout was set to 3600 seconds.
The results are shown in Table 1. The number of timeouts is in
parentheses following the total run time. Our HyperSAT toolwith
B-cubing is denoted as “BCT” and the version that implementsonly
supercubing as “SC”.

5.1 Discussion
Evaluation of any module (eg. preprocessing, decision heuristic,

learning scheme,. . .) of a SAT solver is a difficult task as it is hard
to extract exact information about the influence of a particular mod-
ule on the overall performance from the background noise created
by other modules and their interactions. In most cases, the new
technique seems to be effective. On the given set of benchmarks
HyperSAT had fewer timeouts. B-cubing doesn’t seem to be par-
ticularly effective on IBM BMC Benchmarks. We believe that the
reason is that our greedy heuristic often makes better decisions, re-
sulting in faster convergence to conflicts than what can be achieved
by choosing a BCT branch node as a new decision. HyperSAT per-
forms significantly better on the CMU BMC, integer factorization,
and CSP problem sets.

Benchmark Decisions Avg. Imp. Chain Len.
30.cnf + BCT 8708 354
30.cnf + SC 18401 427

57.cnf + BCT 945 104
57.cnf + SC 1039 102

Table 2: Number of decisions

The number of decisions is typically smaller for HyperSAT with
BCTs while the average length of the implication chains is approx-
imately the same. Examples of typical values for two benchmarks
from the PicoJavaTM set are given in Table 2. The gain achieved by
reducing the number of decisions is dampened by additional com-
putation time required for constructing the BCTs. Currently, this
construction is implemented through a series of complex recursive

6http://www-cad.eecs.berkeley.edu/∼kenmcmil/satbench.html
7http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
Benchmarks/SAT/BMC/description.html
8http://www-2.cs.cmu.edu/∼modelcheck/bmc/bmc-
benchmarks.html
9http://www.eecs.umich.edu/∼faloul/benchmarks.html

10http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/
benchmarks.htm

11http://www.haifa.il.ibm.com/projects/verification/
RB Homepage/bmcbenchmarks.html

functions. We expect better results after a thorough optimization of
our BCT algorithms.

On the scatter plots in Fig. 2 timeouts are placed on the bor-
der line. The results are particularly interesting for IBM FVS set,
where it is obvious that HyperSAT is faster on most smaller in-
stances, but performs worse on some larger ones. From the ex-
tensive experiments we did, it seems that the reason is our aggres-
sive clause deletion strategy. Adapting the clause deletion heuristic
decreased the overall performance of the solver, but improved the
behaviour on larger IBM FVS instances.

6. CONCLUSIONS
We have introduced B-cubing, a powerful new search-space prun-

ing technique, and have shown how to implement a practical SAT
solver based on B-cubing, using Binary Constraint Trees. Our
prototype implementation HyperSAT, despite being a preliminary,
not-fully-optimized program and despite using completelydiffer-
ent search-space pruning, is competitive with the latest version of
ZChaff, one of the best state-of-the-art solvers. Furthermore, our
new solver is slightly more robust, suffering fewer timeouts over
the benchmark runs. Having a new approach that is competitive
with, but with different strengths than, the best existing approaches
allows solving problems that would otherwise be unsolvable.

Future work includes continued engineering and optimization of
the solver itself, as well as exploring ways to approximate B-cubing
more accurately and/or more efficiently.

7. REFERENCES
[1] D. Babić and A. J. Hu. Integration of Supercubing and

Learning in a SAT Solver. InAsia South Pacific Design
Automation Conference, pages 438–444. ACM/IEEE, 2005.

[2] F. Bacchus and J. Winter. Effective Preprocessing with
Hyper-Resolution and Equality Reduction. InSAT, pages
341–355, 2003.

[3] A. Bhalla, I. Lynce, J. de Sousa, and J. Marques-Silva.
Heuristic backtracking algorithms for SAT. In4th
International Workshop on Microprocessor Test and
Verification, pages 69– 74, 2003.

[4] A. Biere. The Evolution from LIMMAT to NANOSAT.
Technical Report 444, Dept. of Computer Science, ETH
Zürich, 2004.

[5] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. In36th ACM/IEEE Design Automation Conference,
pages 317–320. ACM Press, 1999.

[6] R. E. Bryant. Graph-based algorithms for boolean function
manipulation.IEEE Trans. Comput., 35(8):677–691, 1986.

[7] M. Davis and H. Putnam. A Computing Procedure for
Quantification Theory.J. ACM, 7(3):201–215, 1960.

[8] D.-Z. Du and K. Ko.Theory of Computational Complexity.
John Wiley and Sons, 2000.

[9] E. Goldberg, M. R. Prasad, and R. K. Brayton. Using
Problem Symmetry in Search Based Satisfiability
Algorithms. InProceedings of the conference on Design,
Automation, and Test in Europe, pages 134–142, 2002.

[10] J. N. Hooker and V. Vinay. Branching rules for satisfiability.
Journal of Automated Reasoning, 15(3):359–383, 1995.

[11] S. i. Minato. Zero-suppressed bdds for set manipulation in
combinatorial problems. In30th Design Automation
Conference, pages 272–277. ACM Press, 1993.

[12] J. P. Marques-Silva and K. A. Sakallah. GRASP: A Search

Benchmark Set Instances ZChaff II HyperSAT (BCT) HyperSAT (SC)
1. PicoJava BMC (76) all 10756 (2) 16963 (2) 19952 (5)
2. IBM BMC (13) all 78 118 117
3. CMU BMC (34) all 7711 1310 1360
4. FPGA UNS (10) all 7993 (1) 30271 (7) 32771 (8)
5. FPGA SAT (11) all 11 0.33 0.23
6. Int Fact (29) all 58887 (12) 17634 21789 (2)
7. CSP (15) frb30,frb35,frb40 18130 (4) 4154 4246
8. IBM FVS (209) rule 1, except k100 268440 (71) 273036 (71) 274414 (74)

Table 1: Experimental Results

0.01

0.1

1

10

100

1000

timeout

0.01 0.1 1 10 100 1000 timeout

H
y
p
e
r
S
A
T

ZChaff

(a) PicoJavaTM

0.01

0.1

1

10

0.01 0.1 1 10

H
y
p
e
r
S
A
T

ZChaff

(b) IBM BMC

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

H
y
p
e
r
S
A
T

ZChaff

(c) CMU BMC

0.01

0.1

1

0.01 0.1 1

H
y
p
e
r
S
A
T

ZChaff

(d) FPGA SAT

0.01

0.1

1

10

100

1000

timeout

0.01 0.1 1 10 100 1000 timeout

H
y
p
e
r
S
A
T

ZChaff

(e) FPGA UNS

0.01

0.1

1

10

100

1000

timeout

0.01 0.1 1 10 100 1000 timeout

H
y
p
e
r
S
A
T

ZChaff

(f) INT FACT

0.01

0.1

1

10

100

1000

timeout

0.01 0.1 1 10 100 1000 timeout

H
y
p
e
r
S
A
T

ZChaff

(g) CSP

0.01

0.1

1

10

100

1000

timeout

0.01 0.1 1 10 100 1000 timeout

H
y
p
e
r
S
A
T

ZChaff

(h) IBM FVS

Figure 2: Scatter plots

Algorithm for Propositional Satisfiability.IEEE Trans.
Comput., 48(5):506–521, 1999.

[13] K. L. McMillan. Interpolation and SAT-based model
checking. InCAV 03: Computer-Aided Verification, LNCS
2725, pages 1–13. Springer, 2003.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: engineering an efficient SAT solver. In
Proceedings of the Design Automation Conference, pages
530–535. ACM Press, 2001.

[15] A. Nadel. Backtrack Search Algorithms for Propositional
Logic Satisfiability: Review and Innovations. Master’s
thesis, Tel-Aviv University, 2002.

[16] G. Nam, K. Sakallah, and R. Rutenbar. A boolean
satisfiability-based incremental rerouting approach with
application to FPGAs. InProceedings of the conference on
Design, Automation and Test in Europe, pages 560–565.
IEEE Press, 2001.

[17] M. R. Prasad.Propositional Satisfiability Algorithms in EDA
Applications. PhD thesis, University of California at
Berkeley, 2001.

[18] L. Ryan. Efficient algortihtms for clause-learning SAT
solvers. Master’s thesis, Simon Fraser University, 2004.

[19] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli.

Combinational test generation using satisfiability.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(9):1167–1176, Sept 1996.

[20] J. P. Warners and H. van Maaren. A two phase algorithm for
solving a class of hard satisfiability problems.Operations
Research letters, 23:81–88, 1998.

[21] J. P. Warners and H. van Maaren. Recognition of tractable
satisfiability problems through balanced polynomial
representations. In5th Twente Workshop on Graphs and
Combinatorial Optimization, pages 229–244. Elsevier
Science Publishers B. V., 2000.

[22] H. Zhang and M. E. Stickel. An efficient Algorithm for Unit
Propagation. InProceedings of the Fourth International
Symposium on Artificial Intelligence and Mathematics
(AI-MATH’96), Fort Lauderdale (Florida USA), 1996.

[23] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfiability
solver. InProceedings of the International Conference on
Computer-Aided Design, pages 279–285. IEEE Press, 2001.

[24] L. Zhang and S. Malik. The quest for efficient boolean
satisfiability solvers. InProceedings of the 18th International
Conference on Automated Deduction, pages 295–313.
Springer-Verlag, 2002.

