Efficient SAT Solving: Beyond Supercubes

Domagoj Babic

Department of Computer Science,

Jesse Bingham

Alan J. Hu

University of British Columbia

{babic, jbingham, ajh}@cs.ubc.ca

ABSTRACT

SAT (Boolean satisfiability) has become the primary Boolesaz
soning engine for many EDA applications, so the efficiencg At
solving is of great practical importance. Recently, Gotdbet al.
introducedsupercubinga different approach to search-space prun-
ing, based on a theory that unifies many existing methodsir The
implementation reduced the number of decisions, but nodsgee
was obtained. In this paper, we generalize beyond supescate
ating a theory we calB-cubing and show how to implement B-
cubing in a practical solver. On extensive benchmark rusmgu
both real problems and synthetic benchmarks, the new tgeéiis
competitive on average with the newest version of ZChaffjush
faster in some cases, and is more robust.

Categories and Subject Descriptors

J.6 [Computer-Aided Engineering]: Computer-Aided Design;
1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search-backtracking, graph and tree search strategies

General Terms
Algorithms, Verification

Keywords

SAT, formal verification, learning, search space pruning

1. INTRODUCTION

The problem of satisfiability of boolean formulas (SAT) is a
well-known NP-complete problem. In short, given a boolaancf
tion f, one needs either to find a satisfying assignment or to prove
that such doesn't exist. SAT has been intensively used iryrdan
mains. Our focus is the application of SAT to structured fenis,
especially those resulting from EDA domain, like model dtieg
(bounded [5] and unbounded [13]), FPGA routing [16], and &TP

*This work was supported in part by a research grant from the Na
ural Sciences and Engineering Research Council of Canadla an
graduate fellowships from the University of British Coluiab

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DAC 2005June 13-17, 2005, Anaheim, California, USA.

Copyright 2005 ACM 1-59593-058-2/05/0006$5.00.

[19]. Such industrial applications require complete SAIvers,
meaning that the solver must be capable of proving that dgmob
is either satisfiable or definitely unsatisfiable.

Since the early days of SAT solving [7], it was clear that the e
ficiency of SAT solvers depends heavily on search space mguni
rules and decision heuristics. Decision heuristics haceived a
fair amount of attention in the literature [10, 3, 22]. Altigh some
limited success has been achieved, many proposed hesi@stc
extremely sensitive to chosen parameters, and stronglgndigmt
on the details of implementation of the rest of the sdivén gen-
eral, the heuristics tend to perform well only on a restdctet of
problems.

On the other hand, in spite of the obvious relation betwean-pr
ing rules and performance of SAT solvers, there exists ohigral-
ful of SAT pruning techniques. Even fewer are actually used i
modern SAT solvers. Learning and conflict directed backtrar
are probably the most well known, and work quite well. Invegt
new pruning techniques for DPLL solvers is encumbered by the
requirements for compatibility with the DPLL framework aex-
isting pruning techniques. In addition, the savings addemust
justify the additional cost.

1.1 Existing Pruning Techniques

Boolean Constraint Propagation (BCP) and the Pure Liteuld R
(PLRY were proposed in [7]. Modern SAT solvers have efficient
BCP engines for detection of unit clauses, propagation flitn
erals, and conflict detection. A major step forward in SATvsg
was the invention of lazy algorithms for BCP based on he#d/ta
lists [22] and watched literals scheme [14].

The literals which appear in boolean formula with only onagg
are called pure literals. According to PLR, all the clau$ed ton-
tain pure literals may be eliminated. PLR is considered tdooe
expensive to be performed on every step in SAT solving, astexa
counters of appearances of each literal need to be maidtaie
it will be explained later, B-cubing subsumes PLR. So, oyreex
imental solver HyperSAT uses PLR only during the preprdogss
step and implicitly through B-cubing.

When a conflict is detected, the solver finds the reason for the
conflict and tries to resolve it. The simplest method is tckback
to the last decision variable which hasn’t been exploredh With
phases, flip its current assignment, and proceed with thetseA
more elaborate method is to analyze the conflict and badktmac
the decision variable that is actually responsible for tbhefloct.
This scheme is called Conflict-Directed Backtracking (C2By
GRASP [12] was the first SAT solver to implement it.

IMainly clause database organization, learning mechanéstd,
preprocessing.
2PLR was called Affirmative-Negative Rule in the original pap

Learning goes hand-in-hand with conflict-directed badiirag.
Different solvers feature different learning strategiesl alause
deletion schemes. One thing in common is that they all tever
the implication graph in the reverse direction and add daudbat
correspond to different cuts in the graph [23]. From experim
tal results [23] it seems that adding a clause that correiptm
the cut made before the first Unique Implication Point (1-JU&?
a better choice than other cuts proposed so far. Thosegdmue
recently been challenged by a suggestion that adding ietiate
clauses that correspond to the cuts made closer to the ¢onitjht
perform better [18], but no experimental results were giveor a
more extensive introduction into CDB and learning, and draas-
tive list of references, the reader is referred to [24].

Although much work remains to be done, it is clear that leggni
schemes proposed so far can use only a fraction of the infama
inferable from conflicts. The limiting factors are memorguee-
ments and computation time required for reasoning. For pl@m
due to memory constraints, it is impossible to add all theists
that can be learned to the clause database. Similarly, seasem-
ing techniques, like hyper-resolution [2], have been shewbe
computationally too expensive to be performed at every dtep
ing SAT solving.

Recently, a theory of essential points [17, 9] has been zexho

The theory unifies many existing search space pruning scheme

(like PLR, CDB, and learning) under a single theoreticaifesvork
and serves as a tool for developing new pruning techniquegvwA
pruning technique callesupercubingvas proposed as an example
of application of the theory of essential points. Their solwas

a proof of concept, and although supercubing reduced the num
ber of decisions, no actual speedup has been reported. Ghidrge
work [1] pointed out that supercubing is not readily comiplati
with learning and proposed an alternative backtrackinglaach-
ing scheme to integrate supercubing and learning. The texgbor
performance results of the solver were comparable to aieeaelr-
sion of ZChaff (v2003.11.04)[14].

1.2 Contributions

In this paper, we generalize the theory of supercubing t@-nt
duce a new search-space pruning technique, performingnadise
elaborate conflict analysis and moving beyond cubes as aavay t
store knowledge of learned conflicts. The theoretical idehich
we dub B-cube, will blow up in space on practical problemsyso
introduce a data structuigoolean Constraint Treefor compactly
representing a safe approximation of the ideal B-cubes. riEine
technique can be made compatible with learning, but it regui
significant modifications of the backtracking and decisicaking

mechanisms, as in [1]. We have implemented our new technique

in an experimental solver HyperSAT, which features bothrliegy
and B-cubing. Although HyperSAT is in its infancy, we repent
couraging results and show that it can compete with leaddge
solvers like the newest version of ZChaff [14] on a wide ranfie
problems.

2. NEW PRUNING TECHNIQUE

We start with some basic definitions, and continue with expla
tions of supercubing and B-cubing. The proofs are omittsdha
space constraints do not permit the presentation of theegthio-
retical framework on which the proofs are based. We assume so
basic familiarity with modern DPLL-based SAT solvers.

LetB = {0,1}, and let¥ be a finite set of boolean variables. A
literal is denoted by(b, wherex € ¥ andb € B. Define0 =1 and
1= 0, then we say that the litersl! is obtained bylipping .

A cube(clausg is a conjunction (disjunction) of literals in which

each variable fron¥” appears at most once.minterm(also called

an assignmentis a cube in which each variable appears exactly
once. The set of all minterms is denotedMyA CNF formulais a
conjunction of clauses. Fore ¥ and a cube, we writeflip(c, x)

to denote the cube formed by flipping tkditeral of c (if it exists),
and for a set of cubeS we defindlip(S x) = {flip(c,x) | c € S}.

We assume a simple SAT solver which systematically explares
search tree without restarts or CDB, and the solver’s irpatCNF
formula ¢. We useT to denote the binary search tree traversed
by the solve?. The nodes ofl are labeled with variables of .

A decisionis a node inT that has two children, thé-child and
1-child, that correspond respectively to assigning 0 and 1 to the
decision’s variable. For a decisichandb € B , we letd® denote

the subtree of rooted at thév-child of d.

Assumingg is not satisfiable, the leaves bfare callecconflicts
Both supercubing and B-cubing require the solver to consiau
decision conflict clauséDCC) whenever a conflict is encountered.
A DCC contains all the decision variables involved in theftioh
and is typically computed by traversing the implicationgrdack-
wards until the resolvent contains only decision liter&2][The
negation of a DCC is a cube (via an application of DeMorgan’s
Law) that we will call acertificate(of unsatisfiability) and denote
by cert(u), whereu is a conflict node irT. The certificatecert(u)
has the property that no mintenmsuch tham — cert(u) will sat-
isfy ¢.

Consider a decision nodkfor variablex, and the certificates en-
countered when exploring® for someb € B. Note that for any
such certificatec, ¢ may or may not contain®, but ¢ certainly
doesn’t containk®. We are interested in those certificatethat
involve x°.

Definition 1. The set of all conflict nodes found P that in-
clude the literak® will be denotedA,(d), wherex is the variable of
d.

Definition 2. Suppose that there are no satisfying assignments
in d®. TheB-cubeis then defined as a set of certificaigd) =
{cert(u) |[ue Ay(d)} and we also defin®j(d) = flip(Bp(d),x),
wherex is the variable ofl.

Definition 3. Let S,(d) be the set of minterms defined By(d) =
{meM|m— cfor somec € Bj(d)}

THEOREM 1. Suppose Bhas no satisfying assignments. Then
for any minterm m found inRthat satisfiesp, we have ne S,(d).

Supercubing and B-cubing are pruning techniques that bath e
ploit Theorem 1 in the following manner. While exploridf, some
over-approximatior8 of $,(d) is computed. Then, while explor-
ing d®, attention is restricted to the assignmentsSofi.e. assign-
ments ind® that are not irS are pruned. The difference between
supercubing and B-cubing is that the latter’s over-appnaxion
is a tighter fit than the former’s, hence B-cubing allows fasren
pruning.

2.1 Supercubing

Supercubing over-approximat&s(d) using a single cube, de-
fined as follows. The superculse,(d) is the least cube that sub-
sumes,(d), i.e. s (d) is the conjunction of all literalg such that

S(d) — 2.

3For brevity, we leavd formally undefined in this paper.

4To be more precise§ need only over-approximate the intersec-
tion of §,(d) with the subspace correspondingdf

Example 1.Suppose decisions in the search tree are (in order) procedure can be entirely implemented inside the decisigme.

x9,x3,x3, and letd be the decision node fos. The solver explores

the search subtred® (i.e.xg) and finds no solution. In the process

of exploringd®, the following five certificates are constructed:

cg = Xaxd

c, = %AﬁA%A%

c3 = X/\Xé/\X?

Cs = X%/\X?/\

b = g

Here we have thaBo()cB = {c,0s5}, and the least cube that cov-

ersBo(d) is s (d) = x3Ax). Hence, sincdlip(sg(d),x3) over-
approximatesSy(d), in the subtrea?® (i.e. after flippingxs to 1),
the solver can immediately assigi

The implementation of supercubing stores an array reptiegen
a supercube for each decision variable. Storing superashest

memory demanding, as the average size of the supercube per de

cision node is small (density of supercubes, [1]). Alsocsideci-
sions aboval are the same in botti® andd?, such variables need

not be stored in the supercube, which reduces space reguitem

further.

Supercubing can prune the search space that can’t be pryned

learning, as explained in [9]. An algorithm for computingoet
cubes and a thorough discussion of the integration of suparg
and learning are given in [1].

2.2 B-cubing

Going back to Example 1, the solver can immediately aszsﬁgn

afterx3, but then there are no more literals that are common to all

certificates oBp(d). However, there is &ariable that appears in

all certificates inBp(d), and that isxs. So the solver can choose
X5 as a new decision variable. x% is chosen, we can immediately

assignd, since assignments in the spage\ xt A x§ have already
been certified to be unsatisfying lby. Similarly, after pickingxg,

The technique we are proposing requires substantial ceandiee
backtracking mechanism, conflict analysis, and decisiginen

When it comes to the integration of B-cubing and learning on
runs into the same compatibility problems as with supergybi
This problem has been extensively discussed in [1].

3. APPROXIMATION OF B-CUBES

As mentioned before, keeping all the conflicts (i.e. entire B
cube) is not an option. Hence, we need to find a more compact, ap
proximate representation that keeps as much relevantrsspace
pruning information as possible. BDDs [6] or ZBDDs [11], per
haps with heuristic approximation techniques, certairdyne to
mind. Standard decision diagrams, however, are not suitethé
task. In particular, a key advantage of SAT is the abilityawédndif-
ferent decision orders along different parts of the sear@gning
that the data structure must efficiently handle differemialde or-
ders for different certificates, ruling out standard ordedecision
diagrams. We have chosen instead to create a more appeopriat
data structure loosely based on decision trees [8] thatisifspally
designed to efficiently support the operations we need.

Let’s consider some of the key properties of the DPLL aldponit

b and try to picture an ideal B-cube that would be of the greatss

for search space pruning. The SAT search tree is a binary tree
in which decision nodes have two outgoing edgemnd implied
nodes have one. Ideally, our new pruning technique wouldigeo
the solver with a large number of literals that can be immntetiia
assigned after flipping some decision variable. Obviowslgh lit-
erals would need to be present in all the certificates, so Weali
themsupercubed literals The more supercubed literals we have,
the higher the probability that more unit clauses will beeyated,
increasing the chances for quick conflict detection. Thesfitlst
desired property is to have as many supercubed literalsssijpe.
After supercubed literals are removed from certificatesdfare
no more common literals, but there might be common variables
Common variable can be used to sort the certificates in tvsseta

the variable assignmerx% can be immediately asserted. In this according to the phase of the corresponding literal. Bynsicely

manner, only assignment 8(d) are considered afte has been
flipped, which is a legal pruning thanks to Theorem 1.
The fact that more information can be learned from certiéisat

applying the partitioning and searching for common literahd
variables we obtain a binary tree. This tree represents progip
mation of the set of all certificates in a compact manner. Esec

was first observed by Nadel [15] and implemented in Jerusd@t SA when there are no common variables is more complicated.

solver. It seems that Jerusat keeps all the certificates aesl ttie

analysis when a new decision is needed. Needless to say, such
an approach requires a huge amount of memory and it is infeasi

ble even for moderately large problems. For that reasomsaer
seems to keep certificates only for certain number of detiso-
els. When it backtracks out of the window, it discards cesdifs.
This approach has several serious drawbacks.

First, certificates contain a significant amount of redumndian
formation. In Example 1, certificates andc, both contain infor-
mation that onlyx2 needs to be explored after flippilxg. Clearly,
if we had a suitable data structure to represent the comelspg
B-cube, less memory would be required.

Second, discarding certificates means that the search gjlhce
be less constrained and therefore more search will be neg@tiéed
is especially serious when the certificates are discardeadiftision
nodes close to the root of the search tree. For example, ibibte
decision node contains three literals in its supercuben(tivé stem
of its BCT data structure, as will be explained later), aftipping
the root node, the supercube would ideally reduce the sepiate
eightfold.

An advantage of the Jerusat approach is its simplicity. | ified
conflicts are kept (within the predefined window), the reé&smpn

Example 2.Suppose is the variable of the roatof the search
tree, and the B-cubBo(r) is the set{ X Ax3 Axd, X Ax3 Axd 3§
x3nxt}. After flipping x?, the solver can assign the supercubed

variablexd. At this point we know that eithex3 or x3 or x¢ need
to be explored. Whichever choice the solver makes, it miglin
to backtrack later to that choice and try the remaining ofesed
with a multiway choice, the solver would need some heuristic
determine the order of choice exploration. Choosing thé degi-
sion variable from the priority queue might be a better aptio

As there is no clear intuition about whether multiway nodesiht
actually improve performance, and because multiway nodesat
easily added on top of DPLL, an approximation of the B-cuhdato
simply discard such literals.

If the B-cube is approximated by a binary tree, the stem of the
tree clearly contains supercubed variables and corresporalsu-
percube. As it has been proven in [9], supercubing subsum@s P
From the fact that such an approximation of B-cubing corstaiih
supercubed literals as a stem, it follows that the approttanalso
subsumes PLR.

5Except for the nodes skipped over during CDB.

3.1 Boolean Constraint Trees

Boolean Constraint Trees (BCTs) are presented in thisseat
an approximation of B-cubes.

Definition 4. A Boolean Constraint Treeis a rooted binary tree
such thatoranch nodesare labeled with a variable and have two
outgoing edgesLiteral nodesare labeled with a literal and have

the supercubed and implied literals, and has reached atbrame

x in the BCT. According to our heuristic, the search will cheos
the more constrained branch by checking the next couple of
nodes. In the case when BCT is very branchy, none of the nodes
that follow will actually prune the search space. Even wojsst
picking the next variable with the highest priority mightrfoem
better. For that reason, we also set the limit on the maximem p

one outgoing edge. Any variable can appear at most once on acentage of branch nodes in the BCT. The limit was set to 40% for

path from the root to a leaf. Given a BQJ, the prefix of node

x is defined to be the cube of literals on the path from the root

of the BCT to the nodex and denoted byrefc(x). A leaf node
can be either a literal node ortarmination node A termination

nodet is always a child of a branch node and marks that there

were at least two certificates containing cyivefc(t), but no other
common literals or variables.

There are two simplification rules for BCTs. A branch nodéhwit
both children being termination nodes contains no usefatina-
tion and can be discarded. The second rule says that twoesdjac
branches cannot contain equal literals. Such literals rbesh-
serted above the branch as they are common to both paths.

Figure 1: Boolean Constraint Tree

Example 3.A BCT C is given in Fig. 1. Shaded nodes are
branch nodes. Dotted edges denefd. SE branches. Termination
nodes are depicted & Prefix of nodeeis prefz (€) = [j1, ht,il].
Literal j was common to all certificates. Variatilevas also com-
mon to all certificates. Variablgwas common to all the certificates
that includech®, and so on.

The construction of BCTs goes as follows. The algorithm finds

the longest path in the currently constructed BCT on whitkhal
literals correspond to the new certificate. The literal$ Heve no

match in the certificate are removed from the BCT and pushed on

stack. When a leaf node is reached, the algorithm checkshemhet
there was at least one matching variable between thosenelied
literals, and creates a new branch if there was. Otherwikthea
literals from the stack get discarded. Hence, new nodesdateda
to a BCT only if a new branch is created. In all other casesinadd
a new certificate prunes the BCT.

our experiments. Growth limits are empirically establisialues.
If the number of nodes in the BCT is larger than the given limit
special restrictive construction mode is entered in whiel ger-
tificates do not increase the BCT size.

An important property of our algorithm is that it delays thec
ation of branches as long as possible. The resulting BCTstten
have longer chains of literal nodes closer to the root whifabh
nodes are pushed closer to leaves. Such BCTs prune the search
space more efficiently.

3.2 Search Space Pruning

A BCT can be seen as a blueprint of the search space that needs
to be explored. Suppose the search has just flipped a deeistbn
that the assignment generates a certain number of unélBteFirst
unit literals will be propagated. Next, if no conflict is falinour
procedure will traverse the corresponding BCT, propagatgwly
generated unit literals aggressively after each new detisVhen
traversing the BCT, the search procedure might run into siadle
ready assigned as unit literals. If such a literal node nest¢he
current assignment, it is skipped over, otherwise it is degbto be
a conflict. When a branch node is assigned, the edge to bevéallo
is chosen depending on the current assignment.

Our experiments show that the search procedure rarelyrsewve
the entire BCT. Therefore, large BCTSs just slow down thedgar
while the percentage of used nodes is low. This motivatesleur
cision to discard multiway nodes and set BCT growth limits.

Our B-cube pruning techniqueliscal in the sense that it applies
knowledge gained from conflicts in the first branch of a node to
pruning in the second branch. The gained knowledge cannot be
applied to arbitrary parts of the search tree. Learning mlbbave
this limitation, but it is less effective in pruning the selarspace
locally.

4. HYPERSAT

Our experimental HyperSAT solver is based on a simple watche
literal scheme as implemented in LIMMAT [4], with some minor
optimizations and extended to support equivalence clauBes-
processing eliminates unit and pure literals, detect®lagies and
binary equivalences. Equivalence clauses are detectetdnded
as described in [20, 21]. The clause cache is initially seftdéoe
213 clauses, and enlarged as needed. The 1-UIP learning scheme i
used and the deletion strategy is very aggressive - halfltheses
get deleted every time the cache is enlarged. The clauses to b
deleted are chosen according to their size and number of-occu
rences in conflicts. Larger clauses that appear less oftetedeted

BCTSs can grow quite large. To reduce the memory requirements firs¢ The solver is not randomized and it doesn't use restaite

and speed up the BCT construction process, we set the limit oneakest point of our solver is a very simple and fragile impse-
the maximum number of nodes that a BCT can contain. Setting tation of VSIDS [14]. Also, only the preprocessor and BCP are

the limit is achieved by disallowing the creation of new (utags,
while BCT pruning is still allowed as it always reduces theesi
The limit for our experiments was set to 2000 nodes.

B-cubing interacts with decision heuristic and learningp&-
cubed literals are always welcome, as they increase thepiidip
of creation of new unit literals and do not create new braadhe
the search tree. Suppose that the search procedure haseasalp

optimized for performance so far. Our priority is to optimiather
parts of HyperSAT, find a new heuristic which suites the dpeci
search dynamics of the solver, and do memory optimization.

5. EXPERIMENTAL RESULTS

We have chosen eight benchmark sets for empirical evatuatio

of our new pruning technique. The sets represent typicaitioed
applications of SAT with an emphasis on EDA problems. ThePic
Java instances result from Bounded Model Checking (BMChef t
Sun PicoJava TM microprocessd?. The second set (IBM BMC)

is an encoding of BMC of real industrial hardware desi§rishe
third set contains the well-known barrel, longmult, andwgisvar
BMC benchmarks from CMW. The next three sets are all from
Fadi AlouP and represent SAT encodings of FPGA routing and
integer factorization problems. The seventh set is a SAb&nc
ing of Constraint Satisfaction Problems (CSPYnly three sub-
sets {r b30, 35, 40) were used from this set, as no solver could
solve the remaining ones. The last set istthe e_1 subset from
IBM Formal Verification Benchmarks Library without tHel00
instances! The number of instances in each set is given in paren-
theses after the name of the set.

All experiments were done on a 2.6 GHz Pentium 4 machine
with 3 Gb of memory. ZChaff Il version 2004.5.13 running tgne
are given for comparison. The timeout was set to 3600 seconds
The results are shown in Table 1. The number of timeouts is in
parentheses following the total run time. Our HyperSAT twith
B-cubing is denoted as “BCT” and the version that implementg
supercubing as “SC”.

5.1 Discussion

Evaluation of any module (eg. preprocessing, decisionis@er
learning scheme,...) of a SAT solver is a difficult task as héard
to extract exact information about the influence of a paldiconod-
ule on the overall performance from the background noisatece
by other modules and their interactions. In most cases, ¢e n
technique seems to be effective. On the given set of bendismar
HyperSAT had fewer timeouts. B-cubing doesn’t seem to be par
ticularly effective on IBM BMC Benchmarks. We believe thhet
reason is that our greedy heuristic often makes betteridesigre-
sulting in faster convergence to conflicts than what can béeaed
by choosing a BCT branch node as a new decision. HyperSAT per-
forms significantly better on the CMU BMC, integer factotina,
and CSP problem sets.

Benchmark | Decisions| Avg. Imp. Chain Len.
30.cnf + BCT 8708 354
30.cnf+ SC 18401 427
57.cnf+ BCT 945 104
57.cnf+SC 1039 102

Table 2: Number of decisions

The number of decisions is typically smaller for HyperSATtwi
BCTs while the average length of the implication chains jgragp-
imately the same. Examples of typical values for two benckaa
from the PicoJavB” set are given in Table 2. The gain achieved by
reducing the number of decisions is dampened by additiaral ¢
putation time required for constructing the BCTs. Curngnthis
construction is implemented through a series of complenrsage

Shttp://www-cad.eecs.berkeley.edikenmcmil/satbench.html

hitp://www.intellektik.informatik.tu-darmstadt.deXSLIB/
Benchmarks/SAT/BMC/description.html

8http://www-2.cs.cmu.edw/modelcheck/bmc/bme-
benchmarks.html

http://www.eecs.umich.edufaloul/benchmarks.html
1Ohttp://www.nlsde.buaa.edu.erkexu/benchmarks/
benchmarks.htm
Uhttp://www.haifa.il.ibm.com/projects/verification/
RB_Homepage/bmcbenchmarks.html

functions. We expect better results after a thorough opttion of
our BCT algorithms.

On the scatter plots in Fig. 2 timeouts are placed on the bor-
der line. The results are particularly interesting for IBM% set,
where it is obvious that HyperSAT is faster on most smaller in
stances, but performs worse on some larger ones. From the ex-
tensive experiments we did, it seems that the reason is quesg
sive clause deletion strategy. Adapting the clause delétaristic
decreased the overall performance of the solver, but ingotohre
behaviour on larger IBM FVS instances.

6. CONCLUSIONS

We have introduced B-cubing, a powerful new search-spage pr
ing technique, and have shown how to implement a practical SA
solver based on B-cubing, using Binary Constraint Trees.r Ou
prototype implementation HyperSAT, despite being a prielary,
not-fully-optimized program and despite using completilfer-
ent search-space pruning, is competitive with the latestioe of
ZChaff, one of the best state-of-the-art solvers. Furtloeemour
new solver is slightly more robust, suffering fewer timeoater
the benchmark runs. Having a new approach that is competitiv
with, but with different strengths than, the best existipgrmaches
allows solving problems that would otherwise be unsolvable

Future work includes continued engineering and optimazreadif
the solver itself, as well as exploring ways to approximaieuBing
more accurately and/or more efficiently.

7. REFERENCES

[1] D. Babi¢ and A. J. Hu. Integration of Supercubing and
Learning in a SAT Solver. Isia South Pacific Design
Automation Conferen¢cpages 438—444. ACM/IEEE, 2005.
F. Bacchus and J. Winter. Effective Preprocessing with
Hyper-Resolution and Equality Reduction.3AT, pages
341-355, 2003.

[3] A.Bhalla, I. Lynce, J. de Sousa, and J. Marques-Silva.
Heuristic backtracking algorithms for SAT. #ih
International Workshop on Microprocessor Test and
Verification pages 69— 74, 2003.

[4] A. Biere. The Evolution from LIMMAT to NANOSAT.
Technical Report 444, Dept. of Computer Science, ETH
Zirich, 2004.

[5] A. Biere, A. Cimatti, E. M. Clarke, M. Fuijita, and Y. Zhu.

Symbolic model checking using SAT procedures instead of

BDDs. In36th ACM/IEEE Design Automation Conference

pages 317-320. ACM Press, 1999.

R. E. Bryant. Graph-based algorithms for boolean florcti

manipulation|EEE Trans. Comput35(8):677-691, 1986.

M. Davis and H. Putnam. A Computing Procedure for

Quantification Theoryd. ACM 7(3):201-215, 1960.

D.-Z. Du and K. Ko.Theory of Computational Complexity

John Wiley and Sons, 2000.

E. Goldberg, M. R. Prasad, and R. K. Brayton. Using

Problem Symmetry in Search Based Satisfiability

Algorithms. InProceedings of the conference on Design,

Automation, and Test in Europpages 134-142, 2002.

[10] J. N. Hooker and V. Vinay. Branching rules for satisflepi
Journal of Automated Reasoninth(3):359—-383, 1995.

[11] S.i. Minato. Zero-suppressed bdds for set maniputaitio
combinatorial problems. 180th Design Automation
Conferencepages 272-277. ACM Press, 1993.

[12] J. P. Marques-Silva and K. A. Sakallah. GRASP: A Search

(2]

(6]
(7]
(8]
(9]

Hyper SAT

Hyper SAT

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Benchmark Set

Instances ZChaff I HyperSAT (BCT) | HyperSAT (SC)
1. PicoJava BMC (76) all 10756 (2) | 16963 (2) 19952 (5)
2. IBM BMC (13) all 78 118 117
3. CMU BMC (34) all 7711 1310 1360
4. FPGAUNS (10) | all 7993 (1) | 30271 (7) 32771 (8)
5. FPGA SAT (11) all 11 0.33 0.23
6. Int Fact (29) all 58887 (12)| 17634 21789 (2)
7. CSP (15) frb30,frb35,frb40 18130 (4) 4154 4246
8. 1BM FVS (209) rule_1, except k100| 268440 (71)| 273036 (71) | 274414 (74)
Table 1: Experimental Results
. * 100 Fo ’
> 5 5 2
Y £ 3 £
an 01 1 ZOqajfnf 100 1000 timeout 00]001 0.1 ZO‘]a‘ff 10 DD:)01 01 1 ZO‘|afmf 100 1000 DD:)01 01ZO~|aff
(a) PicoJavaM (b) IBM BMC (c) CMU BMC (d) FPGA SAT
;@6;
o o ! Zchajfnf ” 000 meast o m ! Zcha]f“f mn 000 et o m ! Zcha]f“f mn 000 et o o ! Zchajfnf ” o0 meast
(e) FPGA UNS (f) INT FACT (g) CSP (h) IBM FVS

Figure 2: Scatter plots

Algorithm for Propositional SatisfiabilityEEE Trans.
Comput, 48(5):506-521, 1999.

K. L. McMillan. Interpolation and SAT-based model
checking. INCAV 03: Computer-Aided Verification, LNCS
2725 pages 1-13. Springer, 2003.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: engineering an efficient SAT solver. In
Proceedings of the Design Automation Conferepeges
530-535. ACM Press, 2001.

A. Nadel. Backtrack Search Algorithms for Proposiibn
Logic Satisfiability: Review and Innovations. Master’s
thesis, Tel-Aviv University, 2002.

G. Nam, K. Sakallah, and R. Rutenbar. A boolean
satisfiability-based incremental rerouting approach with
application to FPGAs. IProceedings of the conference on
Design, Automation and Test in Eurgmges 560-565.
|IEEE Press, 2001.

M. R. PrasadPropositional Satisfiability Algorithms in EDA
Applications PhD thesis, University of California at
Berkeley, 2001.

L. Ryan. Efficient algortihtms for clause-learning SAT
solvers. Master's thesis, Simon Fraser University, 2004.
P. Stephan, R. Brayton, and A. Sangiovanni-Vincentell

[20]

[21]

[22]

(23]

[24]

Combinational test generation using satisfiabillBEE
Transactions on Computer-Aided Design of Integrated
Circuits and System45(9):1167-1176, Sept 1996.

J. P. Warners and H. van Maaren. A two phase algorithm for
solving a class of hard satisfiability problen@perations
Research letter23:81-88, 1998.

J. P. Warners and H. van Maaren. Recognition of traetabl
satisfiability problems through balanced polynomial
representations. I5th Twente Workshop on Graphs and
Combinatorial Optimizationpages 229—244. Elsevier
Science Publishers B. V., 2000.

H. Zhang and M. E. Stickel. An efficient Algorithm for Uni
Propagation. IfProceedings of the Fourth International
Symposium on Artificial Intelligence and Mathematics
(AI-MATH’96), Fort Lauderdale (Florida USA), 1996.

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfialilit
solver. InProceedings of the International Conference on
Computer-Aided Desigmpages 279-285. IEEE Press, 2001.
L. Zhang and S. Malik. The quest for efficient boolean
satisfiability solvers. IProceedings of the 18th International
Conference on Automated Deductipages 295-313.
Springer-Verlag, 2002.

