
Automatable Verification of Sequential Consistency �
[Extended Abstract]

Anne E. Condon and Alan J. Hu
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver, B.C. V6T 1Z4
Canada

(condon,ajh)@cs.ubc.ca

ABSTRACTSequential onsisteny is a multiproessor memory model ofboth pratial and theoretial importane. Designing andimplementing a memory system that eÆiently provides agiven memory model is a hallenging and error-prone task,so automated veri�ation support would be invaluable. Un-fortunately, the general problem of deiding whether a �nite-state protool implements sequential onsisteny is undeid-able. In this paper, we identify a restrited lass of protoolsfor whih verifying sequential onsisteny is deidable. Thelass inludes all published sequentially onsistent protoolsthat are known to us, and we argue why the lass is likely toinlude all real sequentially onsistent protools. In prini-ple, our method an be applied in a ompletely automatedfashion for veri�ation of all implemented protools.
Categories and Subject DescriptorsB.3.3 [Performane Analysis and Design Aids℄: [For-mal Models℄; C.0 [Computer Systems Organization℄:General|systems spei�ation methodology
General Termstheory, veri�ation
Keywordssequential onsisteny, memory model, model heking
1. INTRODUCTIONThe memory model of a shared memory multiproessor is aspei�ation of how memory will behave from the program-mer's perspetive. Memory systems use intriate �nite-state�The authors were supported in part by researh grants fromthe National Siene and Engineering Researh Counil ofCanada.

protools to implement the desired memory model. Theseprotools are notoriously diÆult to design and debug |beause the primary objetive is performane rather thansimpliity | making them natural targets for formal veri�-ation.Sequential onsisteny is a memory model introdued byLamport [9℄. A memory system is sequentially onsistenti� there always exists an interleaving of the program or-ders of all the proessors suh that eah load returns thevalue of the most reent store to the same address. Sequen-tial onsisteny is important both as a pratial memorymodel that provides intuitive ease-of-programming while al-lowing eÆient hardware optimizations (e.g. [8℄) and also asan extensively studied memory model that an be used tounderstand other, more relaxed models (e.g. [1℄).Ideally, we would like an algorithm that inspets a �nite-state protool and determines automatially whether or notthe protool provides sequential onsisteny. Unfortunately,the general problem of deiding sequential onsisteny of a�nite-state protool is undeidable [3℄.Real protools, however, might not be fully general, sug-gesting that the undeidability result may not be relevantin pratie. Suppose we an haraterize a lass of protoolswith the following properties: membership in the lass isdeidable, all members of the lass are sequentially onsis-tent, and all real protools that implement sequential onsis-teny belong to the lass. This paper proposes suh a lass,thereby reduing automati veri�ation of real, sequentiallyonsistent protools to testing for membership in the proto-ol lass.The basis for our veri�ation method is a graph-based def-inition of sequential onsisteny that arises in the work ofGibbons and Korah [6℄. For an exeution trae of a proto-ol, they de�ne a onstraint graph with a node for eah loadand store operation in the trae. The graph has four kinds ofedges: edges that enfore program order for eah proessor,edges that provide a total order over all store nodes to eahmemory loation, edges from eah store node to every loadnode that gets its value from that store, and fored edgesfrom eah load node to the store node that follows in thetotal store order the store node from whih the load got its

value. A protool is sequentially onsistent if and only if allof its traes have ayli onstraint graphs.To perform automati formal veri�ation using this formula-tion of sequential onsisteny, we must provide an automatiway to onstrut the onstraint graph and verify that it isayli for all possible exeutions of the protool. In pra-tie, this suggests that the onstrution and heking of theonstraint graph must be done in (hopefully small) �nitestate, so that automati veri�ation based on �nite-statemodel heking [5℄ is possible.The remainder of this paper addresses these problems. InSetion 3, we introdue a graph desription notation tailoredto desribe onstraint graphs, and a �nite-state heker toverify that a graph so desribed is ayli. We desribe howthe graph desription notation and heker an be used toverify sequential onsisteny. In Setion 4, we show howreal protools an be annotated with �nite-state informa-tion, to obtain a �nite state observer whih generates a de-sription of the onstraint graph. Our method of generatingthis desription haraterizes a lass of protools for whihsequential onsisteny is deidable, and we argue why allreal protools are likely to belong to this lass. Finally, wederive size bounds on the �nite-state observer, suggestingthat our method is at the edge of what is urrently feasiblefor automati veri�ation tools.
1.1 Related WorkThere has been onsiderable work over the years on veri-fying memory system protools and memory models. Forbrevity, we mention here only losely related work, pertain-ing to �nite-state veri�ation of protools with respet tosequential onsisteny.Plakal et al. [12℄ introdue a veri�ation approah based onlogial loks and apply it to a diretory based protool.Our approah is inspired by the logial loks approah, butin ontrast to logial loks, whih are unbounded, our ap-proah redues veri�ation to a language inlusion problembetween �nite state automata.Henzinger et al. [7℄ propose a very similar approah to ours,using a �nite-state observer to reorder loads and stores toonstrut a witness of sequential onsisteny. Beause ofthe �nite-state limit on reordering, the method is too re-stritive to handle most real protools. One ould view ourapproah as a generalization of theirs that handles all re-alisti protools. We note that Henzinger et al. prove verystrong results for protools in their restritive lass, namelythat it is suÆient to redue veri�ation of a protool witharbitrarily large parameters (number of proessors, numberof bloks, number of values per blok) to a �xed-parameterproblem. In ontrast, our method applies to veri�ation ofonly �xed-parameter protools.Nalumasu et al. [11℄ propose the Test Model-Cheking teh-nique, in whih a protool is heked against various prede-�ned �nite-state automata that test ertain memory modelproperties. These tests an be onsidered to be �nite-stateobservers. By ombining these tests, it is possible to verifymemory models that are lose to, but not idential to, se-quential onsisteny. Determining exatly how these test

ombinations relate to sequential onsisteny and to thelass of protools we an handle is an open question.At a reent, informal workshop, Qadeer proposed an ap-proah for automatially verifying that a memory protoolimplements a memory model [13℄. The basi idea is to iden-tify and formalize many assumptions that typially hold ofreal protools and real memory models. In the presene ofthese assumptions, one an generate a �nite-state witnessautomatially. The protool lass we an verify is muhmore general than Qadeer's, whih annot handle Afek etal's Lazy Cahing protool [2℄, for example. On the otherhand, his omplexity bounds (on the size of the �nite statewitness) are better than ours, and he onsiders memorymodels other than just sequential onsisteny. We believethe two approahes are omplementary: Qadeer's approahan be generalized by adopting our model; our approah anbe made more eÆient by exploiting Qadeer's assumptions.At the same workshop, we presented a preliminary versionof the ideas that evolved into this work [10℄. The generalapproah was the same as in this paper, but the underly-ing model for reording and heking onstraints was di�er-ent, resulting in wildly impratial �nite-state size bounds.In subsequent work [4℄, we demonstrated that the methoddoes allow veri�ation, using urrent model-heking tools,of the sequential onsisteny of a substantial ahe proto-ol, provided that some human insight is used to redue theomplexity of the observer. In ontrast, the present paperpresents a revised theoretial framework that enompasses abroader lass of protools, yet allows proving muh strongeromplexity bounds, suggesting that this work will apply tomore protools and be fully automatable in pratie. We donot have experimental results yet, but are hopeful given ourprevious experienes.
2. DEFINITIONS
2.1 ProtocolsA protool P is a tuple (p; b; v;Q; q0;A [A0; Æ [Æ0;?).The onstants p, b, and v speify the number of proessors,memory bloks, and data values in the protool. The symbol? denotes the initial value of eah blok. The set of statesis Q, of whih q0 is the initial state. The set A is the set ofall ations of the protool that are LD and ST operations,namely ations of the form LD(P;B; V) and ST(P; B; V),where 1 � P � p, 1 � B � b, and 1 � V � v. For notationalonveniene, we use *'s to denote sets of LD and ST ationsover all values of a parameter: e.g., ST(*,B; V) denotes theset fST(P;B; V) j 1 � P � pg. Thus, A = ST(�; �; �) [LD(�; �; �). A0 is the set of ations of the protool other thanLD and ST operations. Corresponding to A and A0 thereare two transition relations, Æ and Æ0, with Æ � Q�A �Qand Æ0 � Q�A0 �Q.A sequene of ations A1; A2; : : : ; Ak is a protool run ifthere is a sequene of states q0; q1; q2; : : : ; qk suh that forall j, with 1 � j � k, the transition (qj�1; Aj ; qj) 2 Æ [Æ0. A protool trae is the subsequene of a protool runthat inludes only the ations in A (i.e., the ST and LDoperations). Two protools P and P 0 are equivalent if theset of traes of P equals the set of traes of P 0. Note thatthe runs and traes of a protool are �nite, so our theoryuses regular automata rather than !-automata.

2.2 Sequential ConsistencyIntuitively, a serial trae is one in whih eah LD returnsthe value of the most reent (prior to the LD) ST to thesame blok. If there were no prior STs to that blok, theload must return ?. Formally, a trae T = t1; t2; : : : ; tkis a serial trae if for all bloks B and values V , for all1 � j � k: (tj 2 LD(�; B; V)))0� (V = ?)^ 8i<j [ti 62 ST(�; B; �)℄_9h<j [th 2 ST(�; B; V) ^ 8ih<i<j(ti 62 ST(�; B; �)℄ 1A :A reordering of a trae of length k is simply a permutation� of the numbers from 1 to k. Let � = �(1); �(2); : : : �(k)be a reordering of a trae T . Let T 0 = t�(1); t�(2); : : : t�(k).� is alled a serial reordering and T 0 is the orrespondingserial trae if � and T 0 have the following two properties.First, � preserves the \per proessor" order of T , i.e., forall proessors P , if ta and tb are operations of proessor Pthen a < b if and only if ��1(a) < ��1(b). Seond, T 0 mustbe a serial trae.A protool is sequentially onsistent if all of its traeshave a serial reordering.
3. VERIFICATION USING CONSTRAINT

GRAPHSIn our method for verifying that a protool is sequentiallyonsistent, a �nite-state observer wathes a protool as itexeutes and gathers information about how to reorder thetrae. The observer presents this information, in the formof a �nite-state onstraint graph, to a heker. A key task ofthe heker, whih is also �nite state, is to ensure that thegraph is ayli. Veri�ation redues to proving that theheker aepts all onstraint graphs generated by the ob-server. See Figure 1. Overall, the method exploits the \lessis more" priniple: a total reordering of a trae is too muhto be olleted and heked with a �nite number of states,but partial information about the reordering is suÆient todedue sequential onsisteny.We �rst de�ne sequential onsisteny using graph-theoretinotation. Appliation of this de�nition to protool veri�-ation requires a �nite state method for testing if a graphis ayli. In Setion 3.2, we identify a lass of graphs forwhih this test an be done. We desribe the �nite stateyle-heker in Setion 3.3. We ombine everything intoour veri�ation method in Setion 3.4.
3.1 A Graph-Based Definition of Sequential

ConsistencyA onstraint graph G for a trae T reords ordering on-straints on the operations in T that must be obeyed for Tto have a serial reordering. The nodes of G are labeled byoperations of T . Nodes are numbered by onseutive inte-gers, starting from 1, aording to their order in the trae.Edges of G inlude program order edges, along with inher-itane edges, whih indiate from whih ST operation a LDinherits its value; ST order edges, whih provide a total or-dering of all ST nodes to the same blok, and fored edges,

"Observer"
Augmented

Protocol

Constraint Graph
Description

Observer

Checker

Accept/Reject?

Model Check:
Does the checker
always accept?

Automatically
converted into

Original
Protocol

Trace
Equivalence?

Compose with Checker

Figure 1: Veri�ation Method Overview. The Ob-server is simply the original protool augmentedwith reordering information. Automati reationof the observer is disussed in Setion 4. The ob-server generates a desription of a onstraint graph,whih is heked by a �nite-state heker. The sameheker is used for all protools. Constraint graphsand the heker are desribed in Setion 3. Thetrae equivalene hek an be omitted in pratiebeause the observer is reated in a non-interferingway from the original protool.whih fore the onstraint that on any path from a ST nodeto a LD node that inherits its value, there is no other STnode to the same blok. More preisely, edges of G mustsatisfy the following edge annotation onstraints:1. Eah edge may be annotated as an inheritane, pro-gram order, ST order, or fored edge. An edge mayhave zero or more annotations.2. For eah proessor P , if u nodes of G are labeled byoperations of P then G has u� 1 program order edgesthat de�ne a total order on these u operations, onsis-tent with trae order.3. For eah blok B, if u nodes of G are labeled by SToperations to B, then G has u�1 ST order edges thatde�ne a total order on these u operations.4. Eah node labeled by LD(P;B; V) has one inominginheritane edge from a ST(P 0; B; V) node (where Pmay equal P 0).5. For all nodes i, j, and k suh that there is a ST orderedge from i to k and an inheritane edge from i toj, there is a fored edge on some path from j to k.Spei�ally, if j is labeled by LD(P;B; V) then thereis either a fored edge diretly from j to k or thereis a (program order) path from j to another node j0labeled by LD(P;B; V), and a fored edge from j0tok.Similarly, for eah node j labeled by a LD(P;B;?)operation, there is a fored edge on the path to the�rst node in the ST order for blok B.

1 2 4 5

3

ST(P1,B,1) LD(P2,B,1) LD(P2,B,1) LD(P2,B,2)

ST(P1,B,2)po−STo

inh

inh

po po

inh

forcedFigure 2: A Constraint Graph. Edge labels indiateinheritane (inh), program order (po), store order(STo), or \fored" edges. The inheritane edge fromnode 1 to node 4 and the store order edge from node1 to node 3 fores an edge from node 4 to node 3,whih prevents trae orders in whih the LD in node4 does not get its value from the most reent ST.The graph has no annotated edges other than those spei�edin 2-5 above. An example of a onstraint graph is givenin Figure 2. The following laim is impliit in the workof Gibbons and Korah [6℄ and follows diretly from thede�nition of onstraint graph.Claim 3.1. A trae T has a serial reordering if and onlyif some onstraint graph for T is ayli.
3.2 Node Bandwidth Bounded GraphsFor veri�ation purposes, we are interested in onstraintgraphs (with ordered nodes) that are node bandwidthbounded. We denote the set f1; 2; : : : ; ig by Ni. We say thata graph with node set Nn is k-node bandwidth bounded iffor all i, at most k nodes in Ni have edges to or from nodesin the set Nn� Ni. For example, the graph in Figure 2is 3-node-bandwidth bounded. Note that node bandwidthboundedness is a property of both the graph and a �xednode ordering. Also, note that our de�nition di�ers fromthe usual edge-based notion of graph bandwidth, e.g., thenumber of edges between nodes in Ni and Nn� Ni maybe unbounded. For brevity, we omit the word \node" andsimply refer to bandwidth bounded graphs.We will represent a direted, k-bandwidth bounded graphG as a string, in a way that failitates a �nite state testthat a graph is ayli. For later onveniene, nodes andedges of G may have labels from some �nite alphabets Aand E , respetively. (In our appliation, A will be the set oftrae operations, and symbols in E will denote the edge an-notations of setion 3.1.) Intuitively, our graph desriptionnotation simply lists nodes by number and edges as pairs ofnode numbers, with additional labels (if any) immediatelyfollowing the node or edge to whih they belong. A naiveapproah numbers all nodes and lists them in order. For ex-ample, the graph in Figure 2 orresponds to the desription:1, ST(P1; B; 1), 2, LD(P2; B; 1), (1,2), inh, 3,ST(P1; B; 2), (1,3), po-STo, 4, LD(P2; B; 1), (1,4),inh, (2,4), po, (4,3), fored, 5, LD(P2; B; 2), (3,5),inh, (4,5), po

Our approah is like the naive approah, but is �nite-stateby exploiting k-bandwidth boundedness. In our approah,node numbers are not used diretly to identify nodes andedges. Rather, eah node has an ID (identi�ation number)between 1 and k + 1. When all edges in or out of the nodewith ID i have been listed, this node may be removed fromthe identi�ation sheme and i an be used to identify an-other node. The graph in Figure 2 is 3-bandwidth bounded,so we an desribe it as:1, ST(P1; B; 1), 2, LD(P2; B; 1), (1,2), inh, 3,ST(P1; B; 2), (1,3), po-STo, 4, LD(P2; B; 1), (1,4),inh, (2,4), po, (4,3), fored, 1, LD(P2; B; 2), (3,1),inh, (4,1), poMore formally, with respet to some �xed k and symbol al-phabets A and E , we de�ne a node desriptor to be a symbolin Nk+1, possibly followed by a symbol in A (that is, a nodeID possibly followed by a node label) and an edge desriptorto be a symbol of the form (i; j) where i; j 2 Nk+1, possiblyfollowed by a symbol in E . A sequene of node desrip-tors and edge desriptors is a k-graph desriptor. Testingif a string is a proper graph desriptor (does not have twoonseutive symbols from A, for example), is easily done in�nite state.Let s be a k-graph desriptor. The graph G representedby s has a number of nodes equal to the number of nodedesriptors of s, with the ith node having the label (if any) ofthe ith node desriptor. Assoiated with eah pre�x s0 of s isa set of ative nodes whih are assoiated with ID's, de�nedas follows. If s0 has fewer than i node desriptors, thenID(i; s0) is unde�ned. If s0 has exatly i node desriptorswith the ith having ID I, then ID(i; s0) = I. Finally, supposethat s0 has more than i node desriptors, with the ith havingID I. If no node desriptor in s0 after the ith node desriptorhas ID I, then ID(i; s0) = I, else ID(i; s0) is unde�ned. Now,the edges of G are de�ned as follows: for eah pre�x of theform s0; (I; I 0) of s, if for some pair (i; j) of nodes of G,ID(i; s0) = I and ID(j; s0) = I 0 then edge (i; j) is in G.Moreover, if s0; (I; I 0); � is also a pre�x of s for some � 2 Ethen the edge (i; j) has label �.A slightly extended notation for desribing k-bandwidthbounded graphs will be useful later. Intuitively, in this ex-tension, an ative node may have more than one ID. Thisis useful, for example, when modeling the following situa-tion: the value of a ST node in the onstraint graph is inmultiple ahe loations of a �nite state protool, in whihase it is onvenient that these loation addresses are thegraph IDs for the ST node. For this purpose, we extendour graph desriptor strings to be sequenes of node de-sriptors, edge desriptors and also symbols from the setfadd-ID(I; I 0) j 1 � I; I 0 � k + 1g. Intuitively, the add-ID(I; I 0) symbol auses the ID I 0 to be added to the nodewith ID I (and I 0 is no longer assoiated with any othernode).Suh an extended graph desriptor represents a graph inwhih the nodes and node labels are de�ned just as for avalid string. To de�ne the edges, for eah node i, we de�nethe ID-set of i with respet to s0, denoted by ID-set(i; s0),

as follows. If s0 has fewer than i node desriptors, then ID-set(i; s0) is empty. If s0 has exatly i node desriptors withthe ith having ID I, then ID-set(i; s0) = fIg. Next, supposethat s0 has more than i node desriptors.� If s0 = s00; I and I 2 ID-set(i; s00), then ID-set(i; s0) isde�ned to be ID-set(i; s00)�fIg. (ID I is now beingused to label another node, and so is no longer in theID-set of the ith node.)� If s0 = s00; add-ID(I; I 0) and I 2 ID-set(i; s00), then ID-set(i; s0) is de�ned to be ID-set(i; s00)[fI 0g. (Add I 0to the ID-set of node i.)� If s0 = s00; add-ID(I 0; I) with I 6= I 0 and I 2ID-set(i; s00), then ID-set(i; s0) is de�ned to be ID-set(i; s00)�fIg. (Again, ID I is now being used to labelanother node, and so is no longer in the ID-set of theith node.)� Otherwise, ID-set(i; s0) = ID-set(i; s00). (No hange tothe ID-set of the ith node.)Then, the edges of G are de�ned as follows: for eah pre�x ofthe form s0(I; I 0) of s, if for some pair (i; j) of nodes of G, I 2ID-set(i; s0) and I 0 2ID-set(j; s0) then edge (i; j) is inG. Anyextended graph desriptor an be onverted in �nite stateto a (standard) graph desriptor without add-ID symbols,so both types of desriptor an be used interhangeably.
3.3 Checking for Cycles in a Bandwidth

Bounded GraphClaim 3.2. There is a �nite state yle-heker that,given as input a k-graph desriptor, aepts if and only ifthe string represents an ayli graph.As node and edge desriptors are read o� from the inputstring, the yle-heker maintains a so-alled ative graphontaining at most k + 1 nodes, in whih eah node has aunique ID. The heker ignores edge labels and, upon read-ing a node ID or edge pair, does the following:� When a node ID, say I, is read, then if there is anode with ID I in the ative graph, for all pairs ofedges (H; I); (I; J) in the ative graph (where H; I; Jrefer to node IDs) a new edge (H;J) is added, if notalready in the graph. Then, the node with ID I and allinident edges are removed from the graph. Finally, anew node with ID I is added to the graph.� When edge (I; I 0) is read, an edge is added from nodewith ID I to the node with ID I 0. If addition of thisedge introdues a yle in the graph, the automatonrejets.If, upon reahing the end of the string, the heker has notrejeted, it aepts. Corretness of the heker follows fromthe fat that the node removal plus edge ontration donein the �rst test of the heker preserves yles in the graph.

3.4 Observer-Checker Verification MethodIn our method for protool veri�ation, the observer gener-ates the same set of traes as the protool, but augmentseah trae with a desription of a k-bandwidth boundedgraph. Given a run of the observer, the heker heks thatthe graph is an ayli onstraint graph for the trae.Let P be a protool. Let A be the set of LD and ST opera-tions of P. An observer for P is itself a �nite state protool.The alphabet (set of ations) of an observer onsists of thesymbols used in a k-graph desriptor for some k, in whihthe node label set is A and the edge label set E is finh,po, fored, STo, po-STo, po-inh, po-foredg, whereinh, po, STo and fored indiate inheritane, program or-der, ST order and fored edges, respetively, and po-STo,po-inh, and po-fored denote edges with two annotations.Note that eah run of an observer ontains a trae as a sub-sequene, namely the subsequene of symbols from A.An observer O for P is a witness for P if (i) the set of traesof O equals the set of traes of P, and (ii) eah run of Odesribes an ayli onstraint graph (as de�ned in setion3.1).Cheking property (i) an easily be redued to the languageequivalene problem for �nite state automata. In pratie,this hek is trivial by onstrution, sine the observer is anoninterfering augmentation of the protool. The heker isa �nite state automaton that heks property (ii). In whatfollows, assume that k (the bandwidth bound) is �xed. Thealphabet of the heker equals that of the observer. Given asinput a run r of observer O, the heker does the following:� Run the yle-heker for k-bandwidth boundedgraphs on r. If the yle-heker rejets, then re-jet. Otherwise, r is an ayli, k-bandwidth boundedgraph.� If not already rejeted, hek that edges satisfy theedge annotation properties listed in setion 3.1. If so,then aept else rejet.By the de�nition of a witness in setion 3.1, the hekeraepts if and only if r desribes an ayli onstraint graph.Also the heker has a �nite number of states sine the yleheker of setion 3.3 does, and the edge annotation heksare easy to do with a �nite number of states. We now havethe following theorem.Theorem 3.1. Let P, O be protools. If O is a witnessfor P, then P is sequentially onsistent. Moreover, testingwhether O is a witness for P an be redued to the languageinlusion problem for �nite state automata.
4. VERIFICATION OF REAL-WORLD

PROTOCOLSWe laim that every real-world sequentially onsistent proto-ol has a �nite state witness observer and that the observeran be generated automatially from the protool. To pro-vide intuition that supports this laim, we �rst argue infor-mally that a weaker property holds for real-world sequen-tially onsistent protools, namely that the witness graph

orresponding to eah protool run is bandwidth bounded.Later in this setion we make this intuition preise, and alsoshow the stronger property that the witness graph orre-sponding to eah run is not only bandwidth bounded butan be generated in �nite state from the run.Let R be a run of a protool and let R1 be a pre�x of R. LetR2 be the orresponding suÆx of R, so that R = R1R2. Weneed to show that if we view the operations of R as nodesof a onstraint graph, the number of operations of R1 withedges to operations of R2 is bounded. We onsider eah typeof edge in turn. It is easy to see that at most p operationsof R1 have program order edges to operations of R2, namelythe last operation in eah proessor's program order, if any.We next onsider inheritane edges; here we appeal to ourunderstanding of how real-world sequentially onsistent pro-tools work. These protools reate \views" of a blok viaST operations, then opy these views into various protoolstorage loations (suh as queues, network message pakets,or ahes of other proessors) where they an be read viathe LD operation, and eventually delete or overwrite views.Multiple views of a blok may exist in the protool state.For example, one proessor may do a ST to a blok, thusreating a new view, while stale views of the blok still existin other ahes. We all a ST operation of R1 inh-ative ifone or more opies of the value (view) written by that ST isstored in the protool state upon ompletion of run R1. Ifa ST is inh-ative, its value may be inherited by LDs in R2.A key point is that, sine the protool is �nite-state, only aonstant number of STs of R1 an be inh-ative. Moreover,in real-world protools, LDs of R2 that inherit their valuesfrom STs of R1 an only do so from STs of R1 that are inh-ative, beause these LDs obtain their values from storageloations of the protool.Third, we onsider ST order edges. Again, we appeal toa property of real-world protools here, namely that for allruns, for eah blok B, the order of STs to B in the run is infat the same as the order of the STs in the orrespondingserial reordering. Thus, if we all ST nodes of R1 with nooutgoing ST order edge STo-ative nodes, the number ofSTo-ative nodes is at most the number of bloks b of theprotool. (Our lass of veri�able protools will atually bede�ned in setion 4.2 to enompass protools that do notsatisfy this per-blok real-time ST reordering property.)Finally, we onsider fored edges. The only LD nodes ofR1 that may have fored edges to STs of R2 are those LDswhih inherit their values from STo-ative STs of R1. Foreah STo-ative operation S of R1 and eah proessor P ,at most one LD of proessor P in R1 need have a forededge to a node in R2, namely the last LD in P 's programorder that inherits its value from S. (This follows from edgeonstraint 5 of setion 3.1.) Call suh a LD operation afored-ative LD. Thus, the number of fored-ative LDs ofR1 is at most pb. In addition, there may be ST nodes ofR1 that have inoming fored edges from LD nodes in R2.Call these fored-ative STs. Eah fored-ative ST is theimmediate suessor of an inh-ative ST in ST order; thus,the number of fored-ative STs is bounded by the numberof inh-ative STs, and therefore is bounded.

In setion 4.1 we de�ne a lass of protools for whih theinheritane edges of a onstraint graph an be generated in�nite state. Protools in this lass have two properties, mo-tivated by our informal arguments above. First, on a LDtransition, the value of the LD is obtained from a knownstorage loation of the protool. Seond, by traking themovement of data among protool storage loations, it ispossible to automatially infer whih ST onferred its valueto eah storage loation. Then in setion 4.2 we desribeonditions under whih the ST order edges of a onstraintgraph an be generated in �nite state. In setion 4.3, wede�ne a lass � of protools that simultaneously satisfy theonditions of setions 4.1 and 4.2. We show that for pro-tools in �, the fored edges of a protool run an also begenerated in �nite state, and onlude that suh protoolshave �nite state observers.
4.1 Tracking Labels for ProtocolsWhen a LD is performed by a protool, how an we tell fromwhih ST it inherits its value? We need to know from whihstorage loation l of the protool the LD gets its value, andwhih ST operation onferred its value to loation l. Wenow desibe protools with traking labels whih provide anautomati way to infer this knowledge. While real protooldesriptions do not expliitly have traking labels, for allsequentially onsistent protools known to us, with an ap-propriate protool desription language the labeling ouldbe generated automatially from the protool desription.In a protool with traking labels, eah state of the protoolreords blok values in at most L loations for some onstantL (in ahes, queues, and memory where bloks are stored).The traking labels are of two types.� Eah transition in Æ (where Æ is the set of transitionson LD and ST operations) is labeled by a loationidenti�er l 2 [1; L℄. Intuitively, the operation is readfrom or written to loation l. Formally, the LD/STtraking funtion is a mapping f : Æ ! [1; L℄.� For eah transition t in Æ0 (where Æ0 is the set of transi-tions on ations other than LD and ST operations) andeah l 2 [1; L℄, the opy traking label, l(t), indiateswhether the value stored in loation l is unhanged bythe transition t or whether it has been opied fromanother loation, namely l(t). Formally, for eah l,there is a opy traking funtion l : Æ0 ! [1; L℄ (withl(t) = l if the value is unhanged).Intuitively, for every run R and loation l of a protool Pwith traking labels, the ST index of l with respet to Ris either 0 or is the index of the ST operation from whihloation l inherits its value upon ompletion of run R. For-mally, the ST index, denoted by ST-index(R; l), an bede�ned indutively using the traking labels as follows.1. If jRj = 0 then ST-index(R; l) = 0.2. If R = R0; A, if the transition t taken on A is a SToperation with traking label l, and if A is the ith traeoperation of R, then ST-index(R; l) = i. Otherwise,

if A is not a LD or ST operation then ST-index(R; l)= ST-index(R0; l(t)). Otherwise, ST-index(R; l) =ST-index(R0; l).Example: An example to illustrate ST indexes and trak-ing labels is given in Figure 3. This example desribes a runof an extremely simple protool with two proessors, P1 andP2, and three bloks, B1; B2; and B3. Eah proessor hastwo ahe loations in whih values of bloks an be stored(part (a) of the �gure). Thus, there are four loations in all:P1's loations are numbered 1 and 2, and P2's loations arenumbered 3 and 4. In the illustration, eah loation ontainsinformation about whih blok is being stored there, if any,and what its value is. Thus, blok B1 with value 1 is stored(by P2) in loation 3, whereas loation 2 is unde�ned.The loation values reet the protool state at the end ofthe run R given in part (b) of the �gure. R is of lengthfour and has three ST operations and one \Get-Shared" op-eration. The Get-Shared operation auses the value of B1stored in loation 1 by P1 after the �rst ation of R to beopied to loation 3 of P2; it is reminisent of how valuesof bloks an be shared or opied in real protools, albeithighly simpli�ed. The traking label of eah transition or-responding to eah ation in run R is also given. The �rstoperation of R, ST(P1; B1; 1) has traking label 1, indiat-ing that B1's value is written in loation 1. The seondoperation, ST(P2; B2; 2), has traking label 4; thus B2'svalue is written into loation 4. The third ation of R is nota LD or ST operation and so there are four opy traking la-bels 1; : : : ; 4 assoiated with this ation, one per loation.Note that 3 = 1 sine the value now stored in loation 3 isopied from loation 1, but i = i for i = 1; 2, and 4, sinethe ontents of loations 1, 2, and 4 are unhanged by theGet-Shared ation. The last operation of R, ST(P1; B3; 3),has traking label 1 indiating that blok B1 is overwrittenby B3 in loation 1. Thus, upon ompletion of run R, theST index of eah loation is given by part () of the �gure.Let R0, LD(P; V;B) be a pre�x of R in whih the LD(P; V;B)operation is the jth trae operation of R. Intuitively, if theLD operation gets its value from loation l and loation l in-herits its value from the ith trae operation of R (whih mustbe a ST operation), then (i; j) is an inheritane edge. Morepreisely, let t be the transition taken on the LD operation,and let the traking label of t be l. Then, if ST-index(R0; l)6= 0 the edge (ST-index(R0; l); j) is an inheritane edge ofR.For any run R of a protool with traking funtions f andl, 1 � l � L, let the inheritane graph of R with respetto these traking funtions be the graph whose nodes arethe trae operations of R, numbered by their order in R,and whose edges are the inheritane edges of R. This graphis L-bandwidth bounded, where L is the total number ofloations in a state of the protool. This is beause, for anypre�x R0 of R, at most L ST operations are \ative", in thesense that they are indexed in the set fST-index(R0; l)gand thus may be in future inheritane edges. Indeed, wehave the following laim.

P1 P2loation ontents1 B3 : 32 ? loation ontents3 B1 : 14 B2 : 2(a)Protool run R trakinglabelsST(P1; B1; 1) 1ST(P2; B2; 2) 4Get-Shared(P2, B1) 1 12 23 14 4ST(P1; B3; 3) 1(b)ST� index(R,1) 3ST� index(R,2) 0ST� index(R,3) 1ST� index(R,4) 2()Figure 3: ST Index Example. Part (a) depits thestate of four protool loations, where loations 1and 2 orrespond to ahe lines of proessor P1 andloations 3 and 4 orrespond to ahe lines of pro-essor P2. Loation 2 is empty, and eah of the otherloations stores the value of one of bloks B1, B2, orB3. Part (b) lists an example run R of length 4, inwhih the Get-Shared ation opies blok B1 fromloation 1 to loation 3. Also, the traking labels ofeah transition orresponding to the ations of R aregiven. The state of the protool in part (a) repre-sents the state upon ompletion of run R. Part ()Lists the ST-index of eah loation with respet torun R.Claim 4.1. Let P be a protool with L loations andtraking funtions f; flg. There is a �nite state automa-ton that, given a run R of P, generates a desriptor of theinheritane graph of R.The generator generates the graph while exeuting the pro-tool on run R, and outputs an extended graph desriptor.Upon transition t = (q; A; q0), the generator does the follow-ing:� If A is a ST operation and t has traking label l thenoutput \l, A". (Reall that this adds a new node tothe graph with ID l and label A.)� For eah l, if l(t) 6= l then output \add-ID(l(t); l)".(Intuitively, the ST node with ID l(t) is being opiedto loation l, so l is added to the set of IDs for this STnode. More generally, the number of IDs of a ST nodeequals the number of opies of the ST in the protoolstate.)

� If A is a LD operation and t has traking label l thenoutput \L+ 1; A; (l; L+ 1), inh". (This auses a newnode with ID L + 1, labeled A, to be added to thegraph, and an inheritane edge to be added into A.)
4.2 Finite State ST ReorderingLet R be a run of protool P. A ST order graph for R is agraph whose nodes are the trae operations of R, numberedby their order in R. As in setion 3.1, for eah blok B, ifthere are u ST operations to B in R then there are u�1 STorder edges in the graph whih de�ne a total order on theseu operations.A ST order generator for P is a �nite state automaton that,given run R as input, generates a k-graph desriptor thatdesribes the ST order graph, for some k. Moreover, thenumber of states of the automaton is at most the number ofstates of P.Protools implemented in pratie have the real-time ST re-ordering property that for all traes, for eah blok B, thetrae order of STs to B is in fat the same as the orrespond-ing serial reordering. Thus, the ST order generator is trivial.One well-known protool that does require non-trivial (butstill �nite state) ST ordering is the lazy ahing protool ofAfek et al. [2℄, but this protool has not been implementedin a real mahine.
4.3 The� Protocol ClassLet P be a protool. Let f; fl; 1 � l � Lg be trakingfuntions and let G be a ST order generator. With respetto f; flg, and G, for eah run R of P, let W (R) be thegraph whose nodes are the trae operations of R. The edgesof W (R) are the inheritane edges of the inheritane graphwith respet to f and flg, the ST order edges given by G,the fored edges implied by these inheritane and ST orderedges, and the program order edges given by the order ofoperations in R.Definition 4.1. A protool P belongs to the lass � iffor some traking funtions f; flg and some ST order gen-erator G, for all runs R of P, the graph W (R) is an aylionstraint graph.Theorem 4.1. Every protool in � has a �nite state wit-ness observer.Proof. We desribe a �nite state observer O that, givenP in �, along with assoiated traking funtions f; flg andST order generator G, onverts a run R of P into a desriptorfor a onstraint graph W (R).O adds eah LD and ST operation of R to the graph asthe operation is read. From Claim 4.1 and setion 4.2, theinheritane and ST order edges an be generated in �nitestate. It is also trivial to generate the program order edges.It remains to extend the observer so that fored edges arealso generated. For this purpose, eah node N 0 labeled by

a LD(P;B; V) operation remains in the ative graph main-tained by the observer until one of the following events o-urs. Let the inheritane edge to N 0 be from node N . (i)Another node, N 00, labeled by LD(P;B; V) is added to thegraph, along with inheritane edge (N;N 00). Node N 0 annow be removed beause there is a path of program orderedges from the N 0 to N 00. (ii) A ST order edge from N , sayto node S, is present in the graph. In this ase, a forededge is added from N 0 to S.The number of LD nodes that need to be in the ative graphfor the purpose of generating fored edges is bounded by p(the number of proessors) times the number of ST nodeswith no outgoing ST order edges. The latter number isbounded, sine the ST order graph is bandwidth bounded.In addition, if ST node S has an inoming ST order edge(N;S) where the value of the ST labeling N may be read byfuture LDs, then S must be maintained in the ative graph.The number of suh ST nodes S is at most L.Thus, the witness graph is bandwidth bounded, where thebound depends only on G, L, p, and b and does not otherwisedepend on R, and so the observer is �nite state.To summarize, we have shown the following. Let P be aprotool for whih traking labels an be generated auto-matially and the real-time ST reordering property holds(or more generally, for whih a ST order generator exists).Then, sequential onsisteny an be veri�ed by an algo-rithm that �rst generates the observer from the protoolin a noninterfering fashion (so that the the set of traes ofthe observer equals those of the protool) and then uses amodel heker (based on our yle-heker) to verify thatevery graph desriptor generated by the observer desribesan ayli onstraint graph. Note that the heker is inde-pendent of the protool.
4.4 Size of ObserverIn order to apply our onstraint graph method to the veri-�ation of a protool, the major obstale will be the size ofthe observer. In addition to the protool state, the observerneeds to maintain in its state a subgraph of the onstraintgraph that may have a number of nodes up to the bandwidthbound of that graph. Here, we desribe an upper bound onthe number of bits of extra state required by the observer,under reasonable assumptions.First, we bound the bandwidth of the onstraint graphs of aprotool P with L loations. We onsider here the ase thatthe protool has real-time ST ordering, and that the valueof a ST is stored in some protool loation at least until theST following it in ST order has been done. In this ase, withrespet to a pre�x of a run, at most L distint ST nodes maybe atively stored in protool loations and thus may havefuture outgoing inheritane edges. Up to pb LD nodes mayontribute to the bandwidth needed for generating forededges. Nodes needed for generation of program order edgesand ST order edges are already ounted among these nodes,so the total bandwidth is bounded by L+ pb.For eah ative node of the onstraint graph, the node labelmust be stored. This requires up to lg p+lg b+lg v+1 bits.

Here lg denotes the eiling of log to the base 2; 1 bit indiateswhether the label is a LD or ST, and parameters P;B, andV are represented using the other bits. Also, IDs for eahST node are needed, in order to generate inheritane edges.An addition L lgL bits are needed to store IDs.Edges of the onstraint graph must also be represented. Ifthe ative nodes are stored in a linear array, no extra storageis needed for edges. Roughly, this is beause the nodes anbe stored in an order onsistent with the partial order ofthe onstraint graph, so that graph edges an be inferred.For example, in the linear array order, a ST to blok Bis followed (not neessarily ontiguously) by LD nodes thatinherit its value, and no other ST to the same blok separatesthem, so inheritane edges are ompletely determined by thelinear order.Thus, an upper bound on the number of bits of extra stateneeded by the observer (in addition to the protool state)is (L + pb)(lg p + lg b + lg v + 1) + L lgL bits. This up-per bound is likely to be substantially less than the numberof bits in the protool itself. Real memory system proto-ols, however, are already roughly at the limits of urrentmodel heking tools, so any additional state is problematiin pratie. Fortunately, some simple optimizations shouldhelp to redue the size of the observer. For example, thevalue of a node is needed only to hek that eah LD getsthe same value as the ST from whih it supposedly inheritsits value. This hek an be done independently from theyle-testing hek, thereby saving lg v bits per node.
5. FUTURE WORKUnderstanding how the size of the observer an be redued,perhaps by imposing further assumptions on the lass ofprotools to be handled, is an important diretion for futurework from a pratial point of view, and will help to relatethis work to that of Qadeer [13℄. Extending these tehniquesto other memory models is another important diretion ofthis researh.Experimental results will be needed to assess the appliabil-ity of our results in pratie. We intend to apply our teh-niques to substantial memory system protools using modelheking tools and explore means to ombat state explosion.An interesting theoretial question is whether the problemof testing sequential onsisteny is undeidable for protoolsthat are bandwidth bounded. The redution used in theundeidability result of Alur et al. [3℄ exploits protools thatare not bandwidth bounded.Finally, we note that our method an also be used for testingthat a partiular run of a protool does not violate sequen-tial onsisteny, building on the approah proposed by Gib-bons and Korah [6℄. The �nite-state observer and hekerould be simulated together with detailed implementationdesriptions that are too omplex for formal veri�ation.
AcknowledgmentsWe thank Mark Hill, Dan Sorin, Manoj Plakal and the othermembers of the Wisonsin Multifaet group for sharing theirinsights and intuition about proving sequential onsisteny.

6. REFERENCES[1℄ Sarita V. Adve and Kourosh Gharahorloo. Shared memoryonsisteny models: A tutorial. IEEE Computer, pages66{76, Deember 1996.[2℄ Yehuda Afek, Geo�rey Brown, and Mihael Merritt. Lazyahing. ACM Transations on Programming Languagesand Systems, 15(1), January 1993.[3℄ Rajeev Alur, Ken MMillan, and Doron Peled.Model-heking of orretness onditions for onurrentobjets. In Eleventh Symposium on Logi in ComputerSiene, pages 219{228. IEEE, 1996.[4℄ Tim Braun, Anne E. Condon, Alan J. Hu, Kai S. Juse,Marius Laza, Mihael Leslie, and Rita Sharma. Provingsequential onsisteny by model heking. Tehnial ReportTR-2001-03, Department of Computer Siene, Universityof British Columbia, April 2001.[5℄ Edmund M. Clarke and E. Allen Emerson. Design andsynthesis of synhronization skeletons using branhing timetemporal logi. In Dexter Kozen, editor, Workshop onLogis of Programs, pages 52{71, May 1981. Published1982 as Leture Notes in Computer Siene Number 131.[6℄ Phillip B. Gibbons and Ephraim Korah. Testing sharedmemories. SIAM Journal on Computing, 26(4):1208{1244,August 1997.[7℄ Thomas A. Henzinger, Shaz Qadeer, and Sriram K.Rajamani. Verifying sequential onsisteny onshared-memory multiproessor systems. In Computer-AidedVeri�ation: 11th International Conferene, pages301{315. Springer, 1999. Leture Notes in ComputerSiene Vol. 1633.[8℄ Mark D. Hill. Multiproessors should support simplememory-onsisteny models. IEEE Computer, pages 28{34,August 1998.[9℄ Leslie Lamport. How to make a multiproessor omputerthat orretly exeutes multiproess programs. ACMTransations on Computer, 28(9):690{691, September 1979.[10℄ Marius Laza, Rita Sharma, Anne Condon, and Alan J. Hu.Protools for whih proving sequential onsisteny is easy.In Workshop on Formal Spei�ation and Veri�ationMethods for Shared Memory Systems. UnpublishedProeedings, Otober 31, 2000. Workshop aÆliated withFMCAD 2000, Austin, TX.[11℄ Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, andGanesh Gopalakrishnan. The `test model-heking'approah to the veri�ation of formal memory models ofmultiproessors. In Computer-Aided Veri�ation: 10thInternational Conferene, pages 464{476. Springer, 1998.Leture Notes in Computer Siene Vol. 1427.[12℄ M. Plakal, D. Sorin, A. Condon, and M. Hill. LamportCloks: Verifying a diretory ahe oherene protool. InSymposium on Parallel Algorithms and Arhitetures,pages 67{76, 1998.[13℄ Shaz Qadeer. On the veri�ation of memory models ofshared-memory multiproessors. In Workshop on FormalSpei�ation and Veri�ation Methods for Shared MemorySystems. Unpublished Proeedings, Otober 31, 2000.Workshop aÆliated with FMCAD 2000, Austin, TX.

