
To appear in Int'l Conference on Computer Hardware Description Language, 1993

Better Veri�cation Through Symmetry

1

C. Norris Ip and David L. Dill

Department of Computer Science, Stanford University, Stanford, CA 94305, U.S.A.

Email: fip, dillg@cs.stanford.edu.

Abstract

We address the state explosion problem in automatic veri�cation of �nite-state systems

by exploiting symmetries in the system description.

We make symmetries easy to detect by introducing a new data type scalarset, a �nite

and unordered set, to our description language. The set of operations on scalarsets are

restricted so that states are guaranteed to have the same future behavior, up to permuta-

tion of the elements of the scalarsets. We have extended our Mur

'

veri�er to generate a

reduced state space on-the-y. The veri�er has been applied to cache coherence protocols,

reducing the states space searched in veri�cation by over 90%.

In some cases, this method can collapse in�nite state spaces into �nite spaces. We call

this property data saturation. Data saturation can be used to exploit data-independence

of protocols automatically, without hand-modi�cation of the protocol descriptions.

Keyword codes: D.2.4; F.3.1; F.3.3

Keywords: Program Veri�cation;

Specifying and Verifying and Reasoning about Programs;

Studies of Program Constructs.

1 Introduction

Protocols are becoming increasingly important in hardware designs. For example, network

and communications protocols are often implemented directly in hardware. As another

example, the internal protocols in large multiprocessors are becoming quite complex.

Debugging these protocols is a major problem in hardware design.

Automatic methods for verifying �nite-state concurrent systems are surprisingly ef-

fective at catching design errors. In general, these methods work by enumerating all

1

This research was supported by the \Multi-Module Systems" thrust of the Stanford Center for Inte-

grated Systems. Sun Microsystems provided the computers.

reachable states of a system [ZWR+80, BWB82, Hol87]. Of course, the major problem

with these methods is that the size of the state space may grow very rapidly with the

description size. This phenomenon is known as the state explosion problem.

We explore a method for reducing the state explosion by exploiting symmetries in

the structure of the system to be veri�ed. Structural symmetries induce an equivalence

relation between states; for veri�cation, it is su�cient to explore only one state per equiva-

lence class. As a simple example, consider a mutual-exclusion algorithm for two processes,

A and B. The state where A is in the critical section and B is waiting is, for all practical

purposes, equivalent to the state in which B is in the critical section and A is waiting.

The basic idea of exploiting symmetries to reduce the state space in automatic veri-

�cation is not new. It was described by Huber et al. [HJJJ84] for high-level Petri nets.

The idea was further developed by Starke [Sta91] for deadlock and liveness checking in

P/T nets. In unpublished work, Clarke, McMillan and Jha at Carnegie Mellon, and (in-

dependently) Emerson and Kaufman at the University of Texas have applied the idea to

CTL model-checking.

Our goal is to make it trivial to detect and exploit symmetries by inspecting the system

description. This is achieved by adding to the description language a new data type,

which we call scalarset. A scalarset can only be accessed through restricted operations

that guarantee certain symmetries to hold on the state graph. The scalarset type has

been added to the Mur

'

protocol description language and veri�cation system developed

at Stanford University [DDHY92].

Using the extended Mur

'

system, we have obtained a reduction of over 90% in the

size of state spaces when verifying examples of directory-based cache coherence protocols.

The times required to verify the protocols were reduced by more than 40%. The extended

system enables us to generate the reduced state space on-the-y, without generating the

original state space. Therefore, less memory is required for the veri�cation.

We have veri�ed cache coherence systems of di�erent sizes. The size of the state

space grows exponentially with increasing numbers of processing nodes, but the use of

symmetries reduces the degree of blow-up signi�cantly. Furthermore, we have discovered

that the new data type makes it easy to exploit a generalized idea of data independence

in protocols [Wol86], allowing automatic veri�cation of some systems with in�nite state

spaces.

2 Symmetry and the Mur

'

Veri�cation System

2.1 Structural Symmetry

To illustrate the concept of symmetries, let us look at an example of a multiprocessor

with caches.

As shown in Figure 1, a multiprocessor system has a number of processing nodes

and memory nodes, communicating via an interconnection network. (The system de-

picted here is a shared-memory multiprocessor which has a directory associated with each

memory location. The directory keeps track of which processor has the memory loca-

tion cached.) Every processor has a distinct name, usually a small integer, called the

processor-id. However, most of the properties of integers are irrelevant in a high-level

System A:

P1

P2

Cache.Status : Shared

Cache.Status : Invalid

Data: 99

Data: X
Mem : 99

Mem.Status : Shared
Dir : 1

Memory

Shared

99

Invalid

X

Shared

1

99

p[1]

Memory

p[2]

Invalid

X

Shared

99

Shared

2

99

p[1]

p[2]

Memory

State a = State b~~System A System B

P1

P2 Mem : 99

Mem.Status : Shared

Memory

Dir : 2

System B:

Data: X

Data: 99

Cache.Status : Invalid

Cache.Status : Shared

State a:

State b:

Figure 1: Unnecessary Ordering of Processor Identities

description of the protocol; it only matters whether two processor-ids are the same. It

does not matter whether one is numerically less than the other, or whether they are con-

secutive. But most veri�ers have no way to detect this fact, so they may inspect what is

basically the same state many times. In addition to processor-ids, there are several other

symmetries that hold for the cache coherence protocol example: addresses, data values,

memory module-ids and message-ids. Although the numerical properties of addresses and

data values are likely to be important at some level of abstraction, they are irrelevant for

reasoning about the correctness of the protocol.

If a veri�er knows the symmetries of this system, it still may have some di�culty

detecting whether two states are equivalent. The states shown in Figure 1 illustrate how

the state variables might be laid out in memory in the veri�er. Note that, to obtain state

B from state A in Figure 1, not only do the processor status entries have to be swapped,

but also the processor-ids stored in the memory directory have to be changed accordingly.

The problem becomes even more di�cult if we consider multiple symmetries at the same

time.

We address the two problems of this example:

1. detection of structural symmetries in the system.

2. on-the-y detection of symmetrically-equivalent states during veri�cation, so that

the full state space does not need to be constructed.

Type { a) user de�ned type

pid: 1..numProcessor; { processor-ids

mid: 1..numMemory; { memory modules-ids

address: 1..numAddress; { address space in a single module

value: 1..valueCount; { possible values in memory word

Var { b) state variables

P: Array [pid] of { 1) an array of record storing the status

Record { of each processor.

State: enum fInvalid, Shared, Masterg;

Value: value;

End;

M: Array [mid] of { 2) a 2-D matrix of records storing the

Array [address] of { status of each address.

Record

State: enum fUncached, Shared Remote, Dirty Remoteg;

Dir: Array [1..dirsize] of pid; { list of processors using the data

Mem: value;

End;

Net: ... { 3) matrices of records storing messages in

{ the network (details not shown).

Figure 2: State Variable Declarations for Cache Coherence Protocol in Mur

'

2.2 The Mur

'

Veri�cation System

We have extended the Mur

'

Veri�cation System to achieve our goal of detecting and

using symmetry.

The basic Mur

'

Veri�cation System [DDHY92] consists of the Mur

'

compiler and

the Mur

'

description language. The Mur

'

description language is a high-level program-

ming language for the description of �nite-state asynchronous concurrent systems. This

language was inspired by the Chandy and Misra's Unity language [CM88]. The Mur

'

compiler generates a C++ program for a particular Mur

'

description. The C++ program

checks the safety properties of the system by explicitly enumerating all reachable states.

A Mur

'

description consists of four parts:

� Constant, type and variable declarations.

� Procedure declarations and transition rule de�nitions.

� Start state descriptions.

� Invariant descriptions.

At any time, the system state is speci�ed by the values of the global variables. The

rules are guarded commands. As a system executes, a rule is chosen nondeterministically

and executed to yield a new system state (by assigning new values to the variables).

Although a rule may consist of arbitrarily complex operations, it is executed atomically,

without interference from other rules in the description. Hence, the use of Mur

'

leads to

Ruleset v : value Do { a set of rules for each value

Ruleset h : mid Do { a set of rules for each memory module

Ruleset n : pid Do { a set of rules for each processor

Ruleset a : address Do { a set of rules for each address in a memory module

Rule \Modifying value at cache"

P[n].Cache[h][a].State = Locally Exmod { if it is an exclusive copy

=)

Begin

P[n].Cache[h][a].Value := v; { then the processor can modify the value

End;

Endruleset;

Endruleset;

Endruleset;

Endruleset;

Figure 3: Transition Rule for Cache Coherence Protocol in Mur

'

Invariant \Only a single master copy exists"

Forall n1 : pid Do { for every pair of processors

Forall n2 : pid Do

Forall h : mid Do { for each memory module

Forall a : address Do { for each address

! (n1 6= n2 { n1, n2 are distinct, i.e. a real pair of processors

& P[n1].Cache[h][a].State = Locally Exmod { and both have an exclusive copy

& P[n2].Cache[h][a].State = Locally Exmod)

Endforall;

Endforall;

Endforall;

Endforall;

Figure 4: Invariant for Cache Coherence Protocol in Mur

'

an asynchronous, interleaving model of concurrency in which processes interact via shared

variables. Examples of Mur

'

description are shown in Figure 2, 3 and 4.

The types of variables can be arrays, records, integer subranges, Booleans or enumer-

ations. However, the conventional method of coding the system state fails to capture

symmetries. For example, let us examine the fragment of a cache coherence protocol

description shown in Figure 2. The states are represented by the processor status (vari-

able P), the memory status (variable M) and the interconnection network (variable Net).

Because we have used integer subranges (pid, mid, address and value) for the ids, we have

imposed unnecessary ordering among the ids.

2.3 De�nition of Scalarset

We have introduced a new data type, scalarset , to facilitate detection of symmetries and

testing of equivalent states. Scalarset supports assignment, testing for equality/inequality,

Type { a) user de�ned type

pid: Scalarset(numProcessor); { processor-ids

mid: Scalarset(numMemory); { memory modules-ids

address: Scalarset(numAddress); { address space in a single module

value: Scalarset(valueCount); { possible values in memory word

Var { b) state variables

P: Array [pid] of { 1) an array of record storing the status

Record { of each processor.

State: enum fInvalid, Shared, Masterg;

Value: value;

End;

M: Array [mid] of { 2) a 2-D matrix of records storing the

Array [address] of { status of each address.

Record

State: enum fUncached, Shared Remote, Dirty Remoteg;

Dir: Array [1..dirsize] of pid; { list of processors using the data

Mem: value;

End;

Net: ... { 3) matrices of records storing messages in

{ the network (details not shown).

Figure 5: Documenting Symmetry with Scalarsets in Extended Mur

'

and array indexing. There are no arithmetic operators, no comparison operators other

than equality/inequality testing, and no literal constants.

In general, when the numerical values of a subrange are not important, we can convert

the subrange to a scalarset, thus enforcing and documenting symmetries that result from

permuting the members of the scalarset (Figure 5). In other words, structural symmetry

exists whenever a subrange is used only in scalarset operations.

There are four value-binding operations for scalarset variables that preserve symme-

tries:

1) Ruleset ID: ScalarsetType Do ruleseq Endruleset: The Ruleset construct gives a

set of rules that are identical except for the value bound to the variable ID. Equiv-

alently, a ruleset nondeterministically chooses a value from the scalarset and binds

it to a variable name. Clearly, this operation does not imply any asymmetry among

the elements of the scalarset.

2) For ID: ScalarsetType Do stmtseq Endfor: A for-loop is an iteration over the scalarset

values. In order to preserve symmetry, the body of the for-loop is restricted so that

the order of execution of the loop-body does not a�ect the �nal result. Whenever

a variable is modi�ed in one iteration, it cannot be read or modi�ed in another

iteration.

3) Forall ID: ScalarsetType Do booleanexpr Endforall: This operation is the conven-

tional 8 operators on a boolean expression. Because an expression in Mur

'

has no

side e�ects, properties speci�ed by these constructs are symmetrical.

Scalar 3

Element2

Dir: Variable of Scalarset Type

P: Array Indexed by Scalarset

Scalar 2

π(1234->1324)
π(Element2)

Figure 6: Permutation on State Variable

4) Exists ID: ScalarsetType Do booleanexpr Endexists: This operation is the conven-

tional 9 operator on a boolean expression.

2.4 Construction of Equivalent States

Scalarset values are represented as integers in the states, but we can obtain equivalent

states by permuting the scalarset entries of a state. For example, as shown in Figure 6, if

we permute the scalarset of size 4 from (1234) to (1324), we �rst apply the permutation to

the individual elements of the array P , and then rearrange the positions of the elements.

The variable Dir is changed from 2 to 3 accordingly. Therefore, any references to the

array P through Dir still gives the corresponding permuted element.

The permutation process can be summarized as follows:

� When the permutation is applied to a scalarset variable, the value is modi�ed to

the corresponding permuted value.

� When an array indexed by a scalarset is permuted, the contents of the array elements

are permuted and the elements are rearranged according to the permutation.

Note that when we refer to \applying a permutation to a state," we are referring to a

one-to-one mapping on the elements of a scalarset, not necessarily a permutation of the

state variables.

3 Better Veri�cation

We present the properties induced by scalarset declarations in a Mur

'

program in this

section. The properties enable us to reduce the number of states to be inspected during

veri�cation. This is essentially an application to Mur

'

of previous work on symmetries

discussed above.

3.1 Graph Automorphism

Our result shows that any set of graph automorphisms that is closed under functional

composition can be used to combine abstractly-equivalent states in the state space. Here

are the formal de�nitions of state graphs and automorphisms on them:

De�nition 1 A state graph is a triple:

A = (Q;S;�)

where Q is the set of states.

S is the set of start states, S � Q.

� is the set of transition rules r

i

: Q! Q [fErrorg. 2

De�nition 2 A graph automorphism on the state graph A : (Q;S;�) is a

one-to-one mapping h : A! A with the following properties:

1. h is a tuple (h

Q

; h

�

), with h

Q

and h

�

as bijections:

h

Q

: Q [fErrorg ! Q [fErrorg

h

�

: �! �

2. The mapping is closed over the components of A:

8q 2 Q : h

Q

(q) 2 Q

8q 2 S : h

Q

(q) 2 S

8r 2 � : h

�

(r) 2 �

h

Q

(Error) = Error

3. The transition relation is preserved:

8q 2 Q; r 2 � : h

Q

(r(q)) = h

�

(r)[h

Q

(q)] 2

Any set of graph automorphisms that is closed under functional composition induces an

equivalence relation on states:

De�nition 3 Given a set of graph automorphisms H that is closed under

functional composition, two states s and s

0

are de�ned to be H-equivalent,

s �

H

s

0

, if s = s

0

or there exists an automorphism h 2 H such that s = h(s

0

).

2

......

......r1 rN

......

......r1 rN

Same Equivalence class

Equivalent next states

Figure 7: Bisimulation Property of Equivalence Class

Moreover, this equivalence relation is a bisimulation (Figure 7):

Theorem 1 The automorphism equivalence induced by a set of automor-

phisms H is a bisimulation on the state graph A : (Q;S;�):

8p

1

; p

2

2 Q :

(p

1

�

H

p

2

) 8r

1

2 � : 9r

2

2 � : r

1

(p

1

) �

H

r

2

(p

2

)) 2

Bisimularity is often de�ned for systems with labelled transitions. The de�nition here is

the obvious analog when states are labelled instead of transitions. In particular, the set

of permutations of a scalarset (applied to a state as described above) form a closed set of

graph automorphisms.

Theorem 2 The set of permutations � on the scalarset entries in the states

forms a set of graph automorphisms over the state graph. The set is closed

under functional composition and the corresponding equivalence relation � is

a bisimulation. 2

3.2 Reduced State Space Generation

Because of the properties of automorphism and bisimulation discussed in Section 3.1, the

equivalence class obtained from structural symmetry has the following properties:

Reached = Unexpanded = f �(q) j q 2StartState g

While Unexpanded 6= � Do

Remove a state s from Unexpanded

For each enabled rule r from the rule set Do

Get next state q by �ring r

If �(q) is not in Reached

Put �(q) in Reached

Put �(q) in Unexpanded

Endif

Endforloop

Endwhileloop

Figure 8: On-the-y Algorithm to Construct the Reduced State Graph

Theorem 3 For a veri�cation state graph A : (Q;S;�) and the corresponding

equivalence class [q] for any state q:

� all members of [q] have the same invariant checking results

8q 2 Q : 8q

1

; q

2

2 [q] :

(9r

1

2 � : r

1

(q

1

) = Error)) (9r

2

2 � : r

2

(q

2

) = Error)

� the sets of next states of all members of [q] are equivalent.

let �(q) = fr(q)jr 2 �g

and [�] = f[q]jq 2 �g where � is any set of states.

then

8q 2 Q : 8q

1

; q

2

2 [q] : [�(q

1

)] = [�(q

2

)] 2

Mur

'

allows the user to provide a set of invariants, which are Boolean expressions, at

the end of a description. An error is reported whenever the invariant is violated. Here,

we are treating the invariants as rules that lead to the \Error" state (so the invariants

are assumed to be symmetric). So this theorem implies that if one state of an equivalence

class violates the invariant, all of them do. Similarly, if one state is a deadlock (has no

successors other than itself), so is every other state in the equivalence class). Currently,

Mur

'

only checks for deadlocks and violations of invariants. However, this result extends

easily to the checking of more sophisticated speci�cations.

With theorem 3, we need search only the (much smaller) quotient graph under the

equivalence relation �, instead of the original graph. We have modi�ed the search algo-

rithm used in the basic Mur

'

Veri�cation System to generate the quotient of the state

graph, as shown in Figure 8. The only change to the algorithm is the introduction of the

function �(q), which maps the state q to a unique state representing its equivalence class

[q].

The new search algorithm enables us to check equivalent states on-the-y. Each state

is checked as generated; an error is reported as soon as it is found, without generating the

whole state space. Using this extended algorithm, we are able to obtain the reduced state

graph without generating the original state graph. The maximum reduction is determined

by the average size of the equivalence classes.

The following theorem shows that it is possible to check for deadlocks and violations of

invariants on the reduced graph:

Theorem 4 .

� For every q in the set of unreduced reachable states, �(q) is in the set of

reduced reachable states obtained by the algorithm.

� An error state q exists in the original state graph if and only if a corre-

sponding error state [q] exists in the reduced state graph.

� A deadlock state q exists in the original state graph if and only if a cor-

responding deadlock state [q] exists in the reduced state and either �(q)

has no next states or the only next state (before canonicalization) is �(q)

itself.

3.3 Representative of the Symmetry Equivalence Class

As described in Section 3.2, the only change to the veri�er is the introduction of the

canonicalization function �. This function determines a unique state �(q) to represent

the corresponding equivalence class. Clarke and McMillan [CM89] have observed that

�nding the canonical state is at least as hard as testing for graph isomorphism, for which

no polynomial-time algorithm is known.

Although the problem is inherently exponential, the large reduction in the size of the

state spaces compensates for the computation load in canonicalization. And for many

practical systems, time reduction in the overall veri�cation process is obtained.

In case of systems with complicated state structure, the computation load in canon-

icalization may be very high. Fortunately, the following observation allows us to reduce

the computation load.

Observation Any subset of states in the equivalence class can be used to rep-

resent the class and still give sound veri�cation algorithm for safety properties.

2

Therefore, normalization algorithms can be used to �nd a subset of states to represent

the equivalence class. In Section 4, the examples show that a small subset achieves most

of the reduction from a full canonicalization function much more quickly.

We have implemented two algorithms:

Canonicalization Algorithm: All permutations are generated and the lex-

icographically smallest state is used as the canonical state.

Normalization Algorithm: We separate the state into two parts. The part

with the most signi�cant bits is canonicalized. Because the same lexi-

cographical value may be obtained from di�erent permutations, we may

have a few canonicalizing permutations for this part of the state. The

second part is normalized by one of the permutations used to canonicalize

the �rst part. The result is a normalized state of a small lexicographically

value.

4 Practical Results

The new symmetry-based search algorithm has been implemented in the Mur

'

Veri�er

System. A wide range of examples were modeled in the new system [ID93]. We present in

this section the results from a directory-based cache coherence protocol that was designed

at Stanford.

Through a cache coherence protocol, a shared-memory abstraction can be implemented

on top of a message-passing network. A typical con�guration consists of processing nodes

communicating to memorymodules via an interconnection network. Each processing node

has its own processors and caches.

Maintaining cache coherence is a very complicated task. For example, while many

processing nodes have shared copies of some data, another processing node may want

to update the data. All shared copies must be invalidated before the data can be up-

dated, so that stale values are not read later. The problem becomes more complicated

when many transactions can be initiated at the same time and the messages can be de-

layed or reordered in the network. A protocol veri�er methodically explores all of these

possibilities.

The DASH multiprocessor, built at Stanford University [LLG+90], uses a directory-

based protocol to keep the caches consistent. The protocol includes normal cache data

access, DMA access, special lock operations and many other operations.

The result presented is obtained from the description on the basic protocol (with

basic cache data operations : cache read, cache write and write back). The processor-ids,

memory module-ids, addresses and data values are modeled as scalarsets. The examples

have a single memory module of one 1-bit data address. We have tried examples with 2,

3 and 4 processing nodes. As shown in the table below, the number of states increases

quickly as the number of processing nodes increases. However, the use of symmetries

reduces the size signi�cantly.

#Nodes Algorithm size time % reduction max possible reduction

2 Unreduced 1,694 12s 0%

Canonicalized 425 48s 75% 1�

1

2!�2!

= 75%

Normalized 429 7s 75%

3 Unreduced 91,254 23min 0%

Canonicalized 7,741 4.5hr 92% 1�

1

3!�2!

= 92%

Normalized 9,002 13min 90%

4 Unreduced exceeded 80Mbytes

Canonicalized exceeded 36hr 1�

1

4!�2!

= 98%

Normalized 206,169 36hr |

... 998 1997

... 0 1

(With two entries
of data only)

State q:

(With two entries
of data only)

State z(q):

Figure 9: Example on Data Saturation

5 Data saturation

In some cases, the use of symmetry can reduce an in�nite state space to a �nite one. For

example, in the cache coherence protocol, the data values can be modeled as a scalarset to

obtain a �nite reduced state space for a in�nite data domain. We obtain a �nite reduced

state space by the theorem below:

Theorem 5 For any �nite system with M scalarsets that are not used as

array indexes, there exist �nite integers N

1

; :::; N

M

such that the reduced state

graph has the same size as the one obtained from the system with the scalarsets

of sizes N

1

; :::; N

M

or above, even if the sizes approach in�nity. 2

The theorem is an immediate corollary of the following lemma:

Lemma For any �nite system with M scalarsets that are not used as array in-

dexes, there are �nitely many distinct equivalence classes induced by symmetry

represented by the scalarsets, regardless of the sizes of the scalarsets.

Furthermore, there exist integers N

1

; :::; N

M

such that the number of distinct

equivalence classes is �xed for scalarsets of size N

1

; :::; N

M

or above. 2

The main idea behind the lemma is as follows: Let N be the number of distinct values

of a given scalarset type that appear in a state s, and a map � which maps these values

to 0::(N � 1), independent of the size of the scalarset, we have s � �(s). Therefore the

number of distinct equivalence class for a scalarset of any size greater than N is the same

as the number corresponding to a scalarset of size N .

Intuitively, the scalarset that is never used to index an array can be regarded as the

data in a data-independence protocol, and the smallest upper bound N corresponds to

the maximum number of distinct values in a state. For example, in our cache coherence

protocol example with one address, most of the states have only one up-to-date value.

Sometimes there may be an old value and an up-to-date value. Very rarely there are

many old values and an up-to-date value. The upper bound of the number of values for

the cache coherent protocol is:

N = ((Number of processors) + 1) � (Number of address)

Using data saturation properties to verify systems with in�nite data size is analogous

to the approach suggested in Wolper's paper on data independence [Wol86]: An in�nite

temporal statement can be replaced by a �nite statement containing a �nite set of data.

But Wolper requires the user to recognize that a protocol is data-independent and to

transform the description in order to exploit the data-independence. Our method requires

no hand transformation (or thought) other than the appropriate use of scalarsets.

6 Conclusion

It should be clear by now that, with su�cient e�ort, any correct design can be veri�ed. It

is time to address explicitly the economics of veri�cation, particularly the labor require-

ments. Our primary contribution here is to make exploitation of structural symmetries

easy, through simple changes in our description language.

There are many interesting possibilities for further exploration. The same approach

can be extended to include other type of symmetries such as rotational symmetry (al-

though the reductions in the state space will not be as dramatic). The ideas presented

here can be applied easily to other high-level description languages.

Note that additional analysis could check automatically that a particular subrange is

used only in ways that would be valid for a scalarset. This would allow us to have the

same bene�ts of reduction via symmetry without adding the scalarset type to a veri�ca-

tion system. Therefore, the symmetry-based technique can be used for other description

languages, such as VHDL. We prefer to have an explicit scalarset type in Mur

'

because

the compiler can then report to the user when a symmetry-breaking operation has been

unintentionally applied. Also, the more abstract description allowed by using scalarsets

may have other advantages; for example, a scalarset can be re�ned into many di�erent

implementations.

The idea of using symmetry in veri�cation can be easily generalized to other speci�-

cations and models. Although the algorithm shown is for the veri�cation of asychronous

concurrent system, the concept of symmetry can be equally applied to process algebra,

synchronous models, etc.

We believe that this is only one of many cases where veri�cation concerns, especially

the state explosion problem, can be addressed in part by description language design.

Every new purpose for description languages has implications for future languages; we

have only begun to explore the implications of automatic veri�cation methods.

Acknowledgements

We would like to thank Ed Clarke and Allen Emerson for sharing not-yet-published results

cited above.

References

[BWB82] J. Billing, M. C. Wilbur-Ham, and M. Y. Bearman. Automated Protocol

Veri�cation. In M. Diaz, editor, Protocol Speci�cation, Testing, and Veri�-

cation, V, pp. 59-70, 1986.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design | a Foun-

dation, Addison-Wesley, 1988.

[CM89] E.M. Clarke and K.L. McMillan. Personal Communication, 1989.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol

veri�cation as a hardware design aid. IEEE International Conference on

Computer Design: VLSI in Computers and Processors, pages 522{525. IEEE

Computer Society, 1992.

[Hol87] Gerard J. Holzmann. Automated Protocol Validation in Argos, Assertion

Proving and Scatter Searching. Computer Science Press, pp. 163-188, 1987.

[HJJJ84] Peter Huber, Ame M. Jensen, Leif O. Jepsen, and Kurt Jensen. Towards

Reachability Trees for High-level Petri Nets. In G. Rozenberg, editor, Ad-

vances on Petri Nets '84, Springer Verlag, pp. 215{233, 1984.

[ID93] C. Norris Ip and David L. Dill. E�cient Veri�cation of Symmetric Concur-

rent Systems. To appear in IEEE International Conference on Computer

Design: VLSI in Computers and Processors, Cambridge, MA, October 3-6,

1993.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and

John Hennessy. The directory-based cache coherence protocol for the DASH

multiprocessor. Proceedings of 17th International Symposium on Computer

Architecture, May, 1990.

[Sta91] P.H. Starke. Reachability Analysis of Petri Nets Using Symmetries. Systems

Analysis - Modelling - Simululation, Vol 8, No. 4/5, pp. 293-303, 1991.

[Wol86] P. Wolper. Expressing Interesting Properties of Programs. 13th Annual ACM

Symposium on Principles of Programming Languages, pp. 184-93, 1986.

[ZWR+80] Pitro Za�ropulo, Colin H. West, Harry Rudin, D.D. Cowan, and

Daniel Brand. Towards analyzing and synthesizing protocols. IEEE Trans-

actions on Communications, COM-28(4), April 1980.

