
Modern Eyes and WineHangOver.com:
Evaluating ASP, JSP, and ASP.NET in the Classroom

By
Randy Connolly

Instructor, Dept. of Computer Science & Information Systems
Mount Royal College

4825 Richard Road SW
Calgary, AB, T3E 6K6

403-440-6061
403-440-6664 (fax)

rconnolly@mtroyal.ca

Abstract

The rapid rate of change within the web development industry has created many

challenges for those crafting curriculum in the Internet application area. Given the time it

takes to create lectures, lab exercises, assignments, and realistic case studies, choosing

the appropriate technology to use is a crucial decision. This paper tries to provide some

help for information systems educators in making this choice. It describes the evolution

of two different web-application development courses over the past three years in terms

of the server-side development technology used during that time and presents the author’s

analysis of the relevant strengths and weaknesses of ASP, JSP, and ASP.NET for teaching

Internet application development.

1. Introduction

Internet application development is now an important topic in information systems and

computer science education.1 Unfortunately, the rapid rate of change within the web

development industry has created many challenges for those crafting curriculum in this

area. Creating lectures, lab exercises, assignments, and realistic case studies takes a great

deal of time and effort. As Lee observes of the typical web development course, “there is

an incredible range of different web technologies each of which is constantly changing

 1

and yet requires a significant amount of effort to learn.”2 Recreating all this material

every twelve to eighteen months is hardly a palatable choice for most instructors, yet the

rate of change within the field of Internet application development has necessitated it. For

this reason, some educators have declared the typical web application course to be almost

“unteachable.”3

For those faced with creating or updating a web application development course,

deciding upon the appropriate technology to use is a crucial and unnerving decision. One

would like to choose a technology that is appropriate for the particular student audience,

relevant within the current work world, and which will not be edging towards

obsolescence the next time the course is offered. This paper tries to provide some help for

educators in making this choice. It describes the evolution of two different web-

application development courses over the past three years in terms of the server-side

development technology used during that time and presents the author’s analysis of the

relevant strengths and weaknesses of ASP, JSP, and ASP.NET for teaching internet

application development.

The Applied Degree in Computer Information Systems and Business at Mount Royal

College has two Internet application development courses. The first, Building Internet

Solutions, is a second-semester course which covers HTML, web design, JavaScript, as

well as an introduction to server-side scripting technology. Since the Winter 2000

semester, the server-side technology used in the course has been Microsoft’s ASP (Active

Server Pages). The second web-based application development course in the program is a

sixth-semester course called Designing and Implementing Electronic Commerce. This

course has been offered three times since 2002. The course material was originally

developed for ASP, but has subsequently used Sun’s JSP (Java Server Pages) technology,

and more recently, Microsoft’s ASP.NET. Both courses use a case study in which students

develop a substantial database-driven web application.

 2

2. ASP

The case study for the first course is a fully functioning, database-driven web storefront

for a fictional fine arts reproduction company named The Modern Eye. Students are

provided with the images and an Access database containing product information. Even

though these students are only in their first year and have only three weeks instruction in

ASP, the students are able to design and create a visually rich site that allows users to

browse the images by artist or title, search using up to six different criteria, place or

remove items from a shopping cart, and order and “pay” for cart items. For students who

have had a bit less than two previous courses of C++ or Java programming, the level of

functionality attainable by the student’s projects can be startling and seems

incommensurate with their first-year standing (see figure 1).

F

 3
igure 1

The reason such complexity can be achieved by second-semester students is due, on the

one hand, to the “thrill” of creating real-world content for the web, and, on the other hand

(and more importantly), to the relative simplicity of ASP. With ASP, one combines

programming logic with presentation tags (HTML) together in one file with the extension

.asp. The file is uploaded to a server running Microsoft’s IIS (or, if your IT department

allows it, the student’s development machine can have IIS, allowing the students to test

pages locally without the upload). The .asp page can then be tested in any browser.

ASP’s syntax is quite straight-forward. Standard HTML is supplemented with asp tags

(<% … %>). Within these tags are either expressions or programming code written in

either VBScript or server-side Javascript (most textbooks use VBScript). If students are

already comfortable with conditional logic and loops, one can teach the basics of creating

simple dynamic ASP pages within one or two lectures. Another one or two lectures can

be spent covering the basic functionality of the core objects in ASP’s object model, the

Response and Request objects, neither of which typically causes the student much

trouble. Constructing pages from data pulled from a database requires teaching the basics

of the ADO object model (usually two lectures), which also does not trouble the student

all that much.

What does, then, trouble the student? In short, putting the pieces together. The student’s

main stumbling block is how to use the simple language and objects together to solve

typical web problems. That is, what the students need are algorithms. For instance, a

typical web application workflow is to display a page, gather some information from the

user, and depending upon the validity of the input, either display another page and pass

the data to it (generally via form parameters) or display the original populated form again

with an error message (see figure 2).

 4

Figure 2

Students typically have some difficulty comprehending and implementing this

interaction. The programming itself is not complicated; rather the difficulty lies in the

fact that the students must implement temporary state themselves and that their pages

must contain code for both the pre-processing and the post-processing together in one

.asp page. Due to the scope of the project’s requirements, students begin to discover a key

drawback to ASP. The logic necessary for implementing these more complex interactions

(especially, for instance, the shopping cart and the checkout), typically results in an .asp

page containing many hundreds of lines of interspersed presentation (HTML) and logic

(VBScript) dealing with security preprocessing, validity testing, flow branching, and state

preservation that is beyond some seasoned programmers, much less first-year students.

(The current instructors of this course have in fact removed the shopping cart and

checkout from the project).

Another problem that the students encounter is how to best handle repetitive coding and

changes across multiple pages within the site. For instance, within a site, many pages

share common user interface elements, such as headers, footers, and navigation systems.

As well, most pages typically share a certain amount of functionality, such as security

checks (e.g., checking if user is logged in yet), visual state presentation (e.g., displaying

 5

number of items in shopping cart, or “most popular” items lists), and database

interactions (e.g., specifying database connection and running SQL queries). In a page

scripting language like ASP (or PHP), some developers will simply copy and paste

presentation and behavioral elements from one page to another (although both ASP and

PHP have an “include file” mechanism that provides a type of modularity to a developer).

As students develop their sites, they begin to appreciate the maintenance difficulties with

ASP’s less modular page scripting approach to web development.

3. JSP

Sun’s Java Server Pages (JSP) shares many of ASP’s strengths, but avoids some of its

weaknesses. Just like ASP, JSP pages can contain both presentation (HTML) and

programming logic within <% … %> tags, except, of course, they use the Java

programming language. The principal advantage of JSP is that it is possible to separate

the presentation from the programming logic via Java Servlets, JavaBeans and/or EJBs

(Enterprise Java Beans)/POJOs (Plain Old Java Objects). While this makes large and

complex sites more manageable to implement and support, it does require a more

sophisticated developer to successfully combine these different coding technologies. For

this reason, JSP was introduced in the second web development course in our program,

the third-year Designing and Implementing Electronic Commerce course. In this course,

the students worked with a single case study through multiple implementation iterations.

The case was also a fully functioning, database-driven web storefront, this time for a

fictional wine retailer named WineHangOver.com. The base functionality for this site was

not much different than that of the Modern Eye site, except for this course, the students

were given a set of frequently changing requirements and had to also implement a partial

checkout pipeline. Like the first course, the students were supplied with the database

(mySQL or SQL Server). Unlike the first course, the students did not have to worry about

visual design (see figure three) as all the user interface elements were supplied. Instead,

the focus was on web application design principals and patterns.

 6

Figure 3

In the first iteration of the case study, students used JSP much like they did ASP, in that

application logic was contained within each JSP page. In the next iteration, students used

a more complex, but ultimately a more maintainable and object-oriented architecture

based on Sun’s Front Controller and View Helper enterprise patterns (also referred to as

the Model 2 Framework).4 This architecture follows the Model-View-Controller design

pattern by using JSP pages, Servlets, JavaBeans and POJOs to create a functional division

of labour between presentation, workflow control, and data handling.

 7

A Servlet is a Java class used to handle HTTP GET and POST requests. In the Model 2

architecture, it acts as a controller responsible for processing HTTP requests using

various helper classes (which could be EJBs or POJOs) and for instantiating JavaBeans

(which are just regular Java classes that follow a naming convention) that act as the

model. The Servlet then forwards control to the appropriate JSP page, which acts as the

view and accesses the data in the JavaBeans for eventual display. In this approach, JSP

pages typically contain little programming (except for looping through collections).

Figure four illustrates the relationships between the elements in the Model 2 architecture.

Figure 4

 8

While undeniably more work at first, separating presentation from workflow from

business logic and data handling offers a number of important benefits:5

• It minimizes the potential impact of changing requirements. Presentation or

workflow can be changed without affecting business rules, and vice versa. The

project’s requirements purposely changed as the students worked on the different

iterations of the case study. Students remarked that the changing requirements

were more easily managed with the Model 2 approach than with the page-only

approach.

• It allows for the potential separation of developer roles. That is, JSP pages can be

maintained by designers, while programmers can work with Servlets and the

other Java classes. In fact, several of the student groups ended up with precisely

this type of division of labour.

• It improves the maintainability of the site by reducing the amount of code

duplication. Common data or business behaviors could be localized within

classes rather than within pages. However, common user interface elements still

require the less than ideal “include file” mechanism (though with enough course

time, we could have introduced yet another technology, JSP Custom Tags, to deal

with this problem).6

While better from a software architecture point-of-view, this integrated JSP, Servlet, and

JavaBean approach was significantly more difficult for the students to work with in

comparison to the ASP or JSP-only approach, and would be completely inappropriate for

first-year students. It took students some time to accommodate themselves to the Model 2

approach. In particular, the students with the most ASP experience found it the most

difficult to use an approach whose rewards are not immediately apparent. With the ASP

(or JSP only) approach, one simply starts coding the web pages. The reward is that results

 9

can happen quickly; the drawback is that the result can be fragile and difficult to

maintain. With the JSP-Servlet-JavaBeans approach, more planning and effort is required

to get results. It does, however, create a more maintainable and flexible system.

4. ASP.NET

In the Winter 2003 semester, the technology used in the ecommerce course switched

from JSP to Microsoft’s new ASP.NET. What was the motivation for the switch? One was

the perceived decline in JSP’s market share. While it is difficult to get an accurate

estimation on market share (since corporate Intranet’s and internal web applications are

typically hidden from the methods used to ascertain usage),7 there are some indications

that JSP has lost ground to PHP and ASP.NET.8 Another reason for the switch was

instructor curiosity/masochism. But the principal reason for the switch is that ASP.NET,

in the opinion of this author, is a better technology for teaching advanced web

development.

ASP.NET is a key part of the .NET Framework, Microsoft’s new Java platform-inspired

architecture. ASP.NET is completely different from regular ASP, and has a considerable

learning curve … even longer than that for JSP. It takes at least six to eight weeks before

the students can start creating anything substantial. One of the reasons why ASP.NET is

more difficult to learn than ASP or JSP is that ASP.NET introduces a host of declarative

server controls which encapsulate complex web presentation behaviors.9 For example, the

DataGrid tag below declares a templated data grid control which, when

programmatically bound to data, displays a list of values from a database table in an

HTML table (see figure 5).
<asp:DataGrid id="myGrid" runat="server"
 GridLines="none" font-size="x-small" font-name="tahoma"
 cellpadding="4" bordercolor="black" borderwidth="1" >

 <HeaderStyle forecolor="white" backcolor="brown" font-bold="true" />
 <ItemStyle backcolor="palegoldenrod"/>
 <AlternatingItemStyle backcolor="beige" />
</asp:DataGrid>

 10

Figure 5

It takes some time and effort to familiarize oneself with most of the controls and their

members. As well, the students had to learn a new language (they could use C# or

VB.NET) and the new style and interactions between the programming and the

presentation. In ASP.NET, presentation logic is formally separated from the presentation

display (tags). Presentation tags are contained in one file (.aspx) and presentation logic is

contained within a class in a “code-behind” file (.cs or .vb). Knowledge of inheritance is

very helpful since the code-behind class is the base class for the .aspx file which in turn

inherits from a powerful Page class (see figure 6).

Page

Sample.aspx.cs

Sample.aspx

Figure 6

 11

Another level of complexity in ASP.NET is the pseudo event-driven nature of the code-

behind class. Server-side processing takes place within server-based events such as

Page_Load and Button_Click. Unlike JavaScript events which are raised and handled

on the client, ASP.NET events are generally triggered on the client, but always processed

on the server. Given the difficulty new web development students have with

programming the more complex web interactions, this extra level of abstraction in

ASP.NET would, in this author’s opinion, be too difficult for the typical first-year

students.

There are, however, a number of benefits once that steep learning curve is surmounted.

The powerful data binding syntax of the declarative server controls facilitates the

construction of most common data-driven web sites. For instance, the example below

shows the programming code to bind the DataGrid (shown in figure 5) to a data source.

Only a few lines of code are required; the presentation details are described not by coding

but via the DataGrid tag itself. Most of the server controls in ASP.NET can be bound to

any object that implements the IList interface (this includes arrays, custom collections,

data readers, etc).
Protected DataGrid emp;
...
emp.DataSource = someobject;
emp.DataBind();

In JSP (without custom tags), this would require a loop similar to the following:
<%
number_records = ...
number_fields = ...
%>
...
<table>
 <% for (int i=0; i<number_records;i++) { %>
 <tr>
 <% for (int j=0; j< number_fields; j++) { %>
 <td>
 <%= somefieldvalue %>
 </td>
 <% } %>
 </tr>
 <% } %}

 12

</table>

Like with the JSP-Servlets-JavaBeans approach, a developer can also use other regular

C# or VB.NET classes to architect helpful web patterns such as the Front Controller or the

Intercepting Filter patterns.10 In this author’s opinion, it is easier for students to create an

architecturally-sound web application with ASP.NET than with the JSP, Servlets,

JavaBeans combination. With the former, students have only two sets of syntaxes and

semantics to master: that of the tags and that of the language used (e.g., C#) for the site’s

supporting classes; with the later, to achieve the same level of functionality and design,

the students have to master JSP, Servlets, JavaBeans, and perhaps EJBs and custom tags

as well. Students will have to do more coding and debugging due to the less powerful

declarative tags within JSP. (However, if one was to use one of the powerful web

development frameworks built on top of JSP such as JavaServer Faces or Jakarta’s Struts,

then the students would have a development experience comparable to ASP.NET in power

and ease of use). As well, the IDE available for ASP.NET – Visual Studio.NET – is, in this

author’s opinion, significantly more powerful than most available Java IDEs (though

perversely, the students were initially encouraged not to use it).

5. Concluding Observations

Students who had exposure to both technologies (when the Electronic Commerce course

switched to ASP.NET, the JSP material moved for one term into another third year course

on Emerging Technology), expressed a marked preference for ASP.NET. Perhaps more

importantly, the students were more consistently able to create a more sophisticated final

term project using ASP.NET rather than JSP. The ASP.NET project the students created

had almost twice as many functional requirements than the JSP version. It integrated a

web services-based credit card checkout system, a fully realized checkout pipeline, and a

more complex set of additional requirements (user polls, product reviews and ratings,

most popular product highlight, etc.). As such, we are committing to ASP.NET, due to its

power and the greater ease of creating enterprise-quality web applications, for our third-

year Electronic Commerce course. As for our first year course, the page scripting

 13

approach is quite suitable for first-year students in that they can be quite productive quite

quickly. We are thus sticking with ASP for next year, even though ASP itself is a

technology definitely on the wane.11 After that, we may switch to PHP as an alternative

introductory page scripting technology.

References

1 – For instance, see IS 2002 Model Curriculum, available http://www.is2002.org

(April 2004), or the ACM/IEEE-CS Task Force on Computing Curricula 2001,
available http://www.computer.org/education/cc2001/final/index.htm (April 2004).

2 – Arthur H. Lee, “A Manageable Web Software Architecture: Searching for
Simplicity,” Proceedings of the 34th SIGCSE Technical Symposium on Computer
Science Education, Vol. 35 No. 1 (January 2003).

3 – K. Treu, “To teach the Unteachable Class: An Experimental Course in Web-Based
Application Design,” Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education Vol. 34 No. 1 (2002).

4 – Deepak Alur, John Crupi, and Dan Malks, Core J2EE Patterns: Best Practices and
Design Strategies, Second Edition (Prentice Hall, 2003). See also “J2EE Patterns
Catalog,” available http://java.sun.com/blueprints/patterns/catalog.html (April
2004).

5 – Inderjeet Singh, Beth Stearns, and Mark Johnson, Designing Enterprise
Applications with the J2EE Platform, Second Edition (Addison-Wesley, 2002), p.
115.

6 – The reason why include files are less than ideal is the fact that the run-time
environment (in our course it was Tomcat) parses JSP pages into Java classes,
compiles them, then executes them. Every time a JSP page is requested, the run-
time environment checks the date stamp of the file to see if it needs reparsing and
recompiling. Unfortunately, changes to include files are not detected. That is, after
changing an include file, one has to resave all JSP files that use it.

7 – Some statistics seem to show that either PHP or ASP is currently the market leader
in server-side technologies (see, for instance those at http://www.netcraft.com).
Yet, the netcraft numbers, for instance, only show the number of servers able to
serve PHP, JSP, etc. Google seems to also provide some indication of relative use.
It has indexes on 234 million asp pages, 302 million PHP pages, 33 million JSP,
and 21 million ASP.NET pages. However Google, Netcraft and other companies
that use spiders or automated surveys to determine market share for a server-side
technology are unable to get past the firewalls which protect most intranets.
ASP.NET and JSP are arguably used more for intranet applications than for the
public pages indexable by Google. As well, these methods can only track pages

 14

using the default extensions (.jsp, .asp, etc); yet, a common feature of the large sites
created with content management systems is that they do not use the default
extensions.

8 – Given that ASP.NET was only released in 2002, the growth in its numbers relative
to JSP does indicate that it may (or already has) overtaken JSP in the enterprise
market; also, the large number of ASP sites are more likely to be upgraded to
ASP.NET rather than to JSP. See “ASP.NET Overtakes JSP and Java Servlets,”
available
http://news.netcraft.com/archives/2004/03/23/aspnet_overtakes_jsp_and_java_servl
ets.html (April 2004). See also Eric Knorr, “Developers Blaze their Own Trail,”
InfoWorld Vol. 25, No. 38 (September 2003).

9 – JSP Custom Tags are somewhat equivalent to the server controls of ASP.NET.
10 – After some reluctance, Microsoft now seems to have embraced the importance of

enterprise patterns. In the summer of 2003, Microsoft opened a dedicated pattern
and best practices site at http://www.microsoft.com/resources/practices. In it, one
can even find that Microsoft has adopted Sun’s nomenclature for the web
presentation patterns!

11 – Perhaps not in industry use, but textbooks and other online resources are becoming
less and less common.

 15

