
A Funny Thing Happened on the Way to the Form:
Using Game Development and Web Services in an

Emerging Technology Course
By

Randy Connolly
Instructor, Dept. of Computer Science & Information Systems

Mount Royal College
4825 Richard Road SW
Calgary, AB, T3E 6K6

403-440-6061
rconnolly@mtroyal.ca

Abstract

This paper presents the results of an emerging technology course devoted to web services

and games development. It defines web services and service-oriented architectures in

general, covers the rationalization for the approach taken in the course, and describes the

scope and design of the game project. It also suggests how web services can be integrated

into an upper-level emerging technology course, and analyzes the students’ (and the

instructor’s) learning experience in the course.

Old situations
New complication …
Passions and potions
Constant commotions
Something for everyone –
A comedy tonight.

– Stephen Sondheim
A Funny Thing Happened On the

Way to the Forum1

1. Introduction

Many information systems programs offer some type of emerging technology course. The

ACM IS 2002 Model Curriculum for instance, has as one of its ten logical course

specifications, a course devoted to “design and implementation within an emerging

 1

environment.” According to the report, such a course should focus on “implementation in

emerging distributed computing environments using traditional and contemporary

development methodologies” and should expect the student “to implement a project that

spans the scope of the previous courses.”2 This paper presents the recent results (Winter

2004) of an emerging technology course that is part of the Applied Degree in Computer

Information Systems and Business at Mount Royal College in Calgary. In this course,

students were exposed to two technologies: games development using Windows Forms

and service-oriented computing via SOAP-based web services. This paper reports on the

“Old situations/New complications” encountered by the instructor and students in the

course. It provides a definition and overview of web services and service-oriented

architectures in general, covers the rationalization for the approach taken in the course,

and describes the scope and design of the game project. It also suggests how web services

can be integrated into an upper-level emerging technology course, and offers some

analysis of the students’ (and the instructor’s) learning experience in this course.

2. Service-Oriented Computing (SOC) and Web Services

Service-oriented computing (also known as service-oriented architectures or SOA) in

general and web services in particular, is perhaps the hottest – or certainly the most hyped

– new technology within the software application world. IBM claims that SOC is “the

next evolutionary step in software” and that

… after all the hype has subsided, and all the inflated
expectations have returned to reality, you will find that a
SOA, at least for now, is the best foundation upon which an
IT organization can take its existing assets into the future as
well as build its new application systems.3

What is service-oriented computing and how does it relate to web services? SOC is the

“computing paradigm that utilities services as fundamental elements for developing

applications.”4 The fundamental use of services can dramatically alter the way one

architects an application. Such an approach results in “an application architecture within

which all functions are defined as independent services with well-defined invokable

 2

interfaces which can be called in defined sequences to form business processes.”5 Thus

SOC is “an architectural style whose goal is to achieve loose coupling among interacting

software agents.”6 Figure 1 illustrates the difference between the traditional integrated

application and the new SOC application.7

Traditional Application

Functional
Capability

Functional
Capability

Functional
Capability

SOC Application Functional Capability

Functional Capability

Functional Capability

network

versus

Figure 1

The rationale behind this new design paradigm is one that will be familiar to computing

practitioners with some experience in the enterprise: namely, how to best deal with the

twin problems of integration complexity and reuse. Due to corporate mergers, longer-

lived legacy applications, and the need to integrate with the Internet, application

integration has become a major priority of IT organizations.8 The principal difficulty with

application integration however is the sheer number of interfaces required. If there are n

systems that need to be directly integrated with each other, than n*(n-1) interfaces will be

necessary, and each new system will require an additional n*2 interfaces.9 As well, since

these systems are typically not interopable, expensive middleware systems or complex

object messaging solutions (such as RMI, CORBA, and DCOM) are necessary to

implement these interfaces.

 3

Service-oriented computing potentially provides a more palatable solution to these

integration problems. But what is a service? A service is simply “a unit of work done by a

service provider to achieve desired end results for a service consumer.”10 A service is a

self-describing, self-contained, open interface to piece of functionality;11 that is, it should

provide a platform-independent interface contract that can be dynamically located and

invoked, and which contains no state.12 Since these services can then be offered by either

different systems within an enterprise as well as by different enterprises, they “provide a

distributed computing infrastructure for both intra- and cross-enterprise application

integration and collaboration.”13 SOC promises then a “nirvana, in which discrete

channels of business logic become reusable, interchangeable parts that can be strung

together into business processes with almost no development cost.” 14

While SOC concepts predate web services, it was the standardization provided by web

services that made SOC viable. HTTP and XML are used both to publish and consume a

web service. The two additional platform-independent XML-based protocols of SOAP and

WSDL constitute the basis of web services. WSDL (Web Services Description Language)

describes the operations provided by a service; that is, it documents and describes the

data types and signatures of the operations. SOAP (Simple Object Access Protocol)

encodes the service invocations and their return values within a HTTP header (see figure

2).

Figure 2

 4

3. Using the .NET Framework

While web services are by design platform-independent, some platforms make it easier to

construct and consume them. Microsoft’s .NET Framework makes it quite painless to

work with web services and for this reason (as well as the fact that this semester’s

students had already taken ASP.NET and C# from the same instructor in the previous

semester) was chosen as the development environment for the course. Using Visual

Studio, in the first lab students were able to consume a language translation web service,

as well as consume Amazon.COM’s web service (which makes all of Amazon’s data and

functionality available). Creating a web service was not much more difficult. In the next

lab, students created a credit card validation service that made use of data within a SQL

Server database. Given the relative ease of working with web services in the .NET

Framework, something else was required to fill up the fifteen weeks of the semester!

In our program, students are exposed to a variety of application development

environments. Students take two courses devoted to creating web applications, three

courses to teach programming (from structured to object-oriented) using Java, and three

courses teaching databases and rapid application development using Microsoft Access or

Oracle Forms. One perceived lacuna in the students’ education is that they never create

native Windows client applications. For this reason, it was decided to “fill the time up” in

the emerging technology course with Windows Forms development, which is the .NET

replacement for the C++/MFC approach to native Windows development. The plan was

to teach the basics of Windows Forms development, move back into web services, and

then have students create some type of desktop client for consuming each other’s web

services.

4. Developing a Game (the Plan)

But a funny thing happened on the way to the Form. The initial plan for the course

project was a typical business application, albeit distributed via web services. All such

applications tend to have a similar structure: retrieve data, transform and present data,

validate changes to data, and save data. In two previous courses, the students had already

 5

covered several typical data access patterns and were reasonably familiar with layering

and architecting the typical business application using classes. Since we were using

Visual Studio, students were able to learn the basics of creating Windows applications

within two weeks. During this time, it became quite apparent that what really captured

their interest was drawing graphics and interacting directly with the mouse and keyboard.

Seeking to maintain and use this interest, I decided to change the course project from a

business application using web services to a graphical game using web services.

My hope was that through a game project the students would be more motivated to learn.

Within the field of education, there is “an abundance of literature to support the use of

games as tools that help learners.”15 Within the context of computer science, a variety of

researchers have found game assignments to be helpful for teaching and motivating

introductory programming students.16 As well, Jones has noted that games can provide

“an extremely project-oriented, upper-division course to exercise and enhance the

programming and problem-solving skills of advanced students.”17 Another motivation for

switching to a game project was relevance. Given that the students do not have a great

deal of real-world work experience, they may find it difficult to appreciate the typical

integration problems that web services address. It was hoped that a game project would

be a more familiar context to them and hence would better communicate the distributed

nature of web services and their integrating role. The remainder of the paper will describe

the game, problems (and opportunities) encountered, and how web services were

eventually integrated into the project.

The game project was a “simple” role-playing game. Students worked in pairs to create a

game in which a player (in the role of a barbarian, knight, wizard, or ninja, each with its

own unique statistics) navigates a multi-screen map and fights monsters based on a

configurable combat system. For simplicity sake, students used GDI+ rather than DirectX

for drawing graphics. Various additional custom controls had to be created to handle

status messages, the character’s state, and the character’s position in the game world. As

little game information (e.g., map, actors, world, etc.) as possible was contained within

the code; instead this information had to be contained in XML files.

 6

The students were provided with a variety of royalty-free graphical resources (figure 3

shows some samples). These included several hundred tile files (organized into sets) to

construct maps, static and animated item images for placement on the map, as well as

over a hundred animation strip images for player and monster actors. Each monster or

player actor had four direction facings (north, east, south, and west) and five states

(paused, walking, attacking, being hit, and dying) that had to be animated.

sample tile images

sample item images

sample actor animation strip image (attacking west)

sample monster animation strip image (attacking west)

Figure 3

In the course labs, students were introduced to the following: GDI+ development, creating

custom controls, parsing XML, and working with timers. In one of the labs, students

 7

constructed a simple sprite (an independent animated object) as a means of demonstrating

how to use an event-based timer as a first step in learning multi-threaded programming.

Upon this foundation, students were to unproblematically construct this game (early

March deadline) as a first step in the eventual web service-enabled game. But “New

complications/Constant commotions” were indeed encountered along the way!

5. Developing a Game (the Reality)

While students were very excited by the project before they began it, as they worked on

it, they found it to be perhaps the most difficult assignment they had encountered in the

program. Students could not simply replicate the typical business application process –

read, display, validate, and write data – and its typical architecture (presentation layer,

business layer, data layer). Instead, students were forced to construct their own

architecture (for the world and its maps, for the actors, for the sprites, and for the combat

system) and process (e.g., when should the map files be read, when should the images be

read for the actors, should all the images be stored in memory, etc).

In previous application development courses, I have found it helpful to introduce one or

two design patterns. This project, in contrast, was a goldmine of potential pattern usage.

In the context of the game project, I was able to demonstrate the practical usefulness of

the following patterns: Singleton (for creating a single repository of all images), Observer

(for handling the game events caused by the actors which needed to be handled by the

game environment), Mediator (for coordination between different user controls), Factory

(creating GDI+ images based on tile keys), State (for handling the actor’s state), Strategy

(for handling the run-time configurable combat systems), and Command (for handling

different user-specifiable game actions).

Yet despite of (or perhaps because of) these helpful patterns, the student feedback was

not uniformly positive. Several complained that the game required them “to think

constantly.” Other students commented that they “had to use all the stuff [knowledge

 8

presumably] from previous courses.” The student experience appears to back up Jones’s

belief that the

integration of concepts and techniques required to design
and build computer games covers many of the topics
offered in an undergraduate computer science curriculum,
allowing students concrete application of much of the
theory, concepts, and skills they have been exposed to.18

I’m not sure if these student comments were a victory or a defeat. The conceptual

difficulty of game development was reflected in the eventual marks. While the average

was a respectable 68%, the marks tended to be either in the A range (small majority) or in

the D range, clearly both a victory and a defeat from an instructor’s standpoint. The lower

marked projects tended to have non-functioning combat systems (which required two sets

of timers and thus the management of three execution threads). Nonetheless, the quality

of several of the student’s games was very rewarding (see figure 4).

 9

4

6. Web Service Integration in

The original plan for web service integr

functionalities out of the game and plac

their maps) would be obtained by the ga

services. Monster and character statistic

Figure

to Game

ation in the game project was to pull certain

e them within web services. World definition (and

me client from any of the students’ game web

s and all combat result calculations would also be

10

pulled from the web service. However, due to the fact that a large minority of students

were unsuccessful in implementing all the functionality of the first iteration of the game,

I felt compelled out of fairness to provide an alternate second part of the project (I could

have provided them with my working version of the first part, but did not because I felt it

would compromise next year’s delivery of the course). Rather than extending the game,

the students created an editor that could load, edit, and save XML isometric-tile maps (see

figure four). The editor could load the map from a file or from a web service. Each

student had to also create and publish a web service which provided an XML stream that

could be consumed by the other students’ editors. Rather than using UDDI or DISCO for

the discovery of the services (due to security-related problems with the lab), the students

were provided with a URL of a web service that returned a list of available student map

services and their URLs. Figure 5 shows a screenshot of a finished sample editor (which

shows a map in the process of being defined).

Figure 5

 11

7. Verdict on the Game and Editor

Students still found the graphical nature of the editor enjoyable, but did not find it as

difficult as the game. It certainly did expose them to the creation and consumption of web

services. However, it did not really capture the typical advantages of service-oriented

computing in general. As a result, I’m not sure that I will use the game project as a

demonstration wrapper for web services in the future. The game certainly succeeded in

capturing the student’s interests and effort (students claimed that they spent considerably

more time on this assignment than they usually did). Perhaps this is justification enough

for its use. Nonetheless, its complexity made it difficult to show off the true benefits of

web services.

Some other possible assignment ideas for web services that could be implemented in the

confines of a semester are:

• A vacation planner. Each student group would become a vacation service

provider: a hotel, a car rental agency, an airline. They would then collaborate to

decide the standard interfaces for polling information from the service (e.g.,

availability for specified date, cost for a service) and then implement the web

services for their vacation provider.

• An enterprise integration application. Each student group would be assigned a

particular set of business data – accounting, inventory, sales, customer relations,

human resource management, etc. Each group would then collaborate to define

interfaces for their services. Each group would then create Windows or Web

client application (such as front-to-back sales system) that integrates all this

information.

8. Conclusion

Despite the difficulties encountered along the way this semester, I feel that both games

development and web services can be an important part of an information systems

 12

education. The higher-order thinking and programming creativity required for games

development can certainly be useful for non-games development. As well, web services

are here to stay. Exposing students to this new paradigm will be beneficial for the

student’s future in the service-oriented computing enterprise of the present and near

future.19

References

1 – Stephen Sondheim, “Comedy Tonight,” A Funny Thing Happened On The Way To

The Forum (1962).
2 – “IS 2002 Model Curriculum and Guidelines for Undergraduate Degree Programs in

Information Systems,” available: http://www.is2002.org (April 2004).
3 – Kishore Channabasavaiah, Kerrie Holley, Edward M. Tuggle, Jr., “Migrating to a

service-oriented architecture, Part 1,” available: http://www-
106.ibm.com/developerworks/webservices/library/ws-migratesoa (April 2004).

4 – M. P. Papazoglou and D. Georgakopoulos, “Service-Oriented Computing,”
Communications of the ACM Vol. 46, No. 10 (October 2003), p. 25.

5 – Channabasavaiah et al, Ibid.
6 – Hao He, “What is a service-oriented architecture?” available:

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html (April 2004).
7 – Adopted from Sandeep Chatterjee and James Webber, Developing Enterprise Web

Services: An Architect's Guide (Prentice Hall, 2003).
8 – Channabasavaiah et al, Ibid.
9 – Channabasavaiah et al, Ibid.
10 – Hao He, Ibid.
11 – Ethan Cerami, Web Services Essentials (Sebastopol, CA: O’Reilly & Associates,

Inc., 2002), p. 4-5.
12 – Sayed Hashimi, available: “Service-Oriented Architectures Explained,”

http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html (April
2004).

13 – Papazoglou and Georgakopoulos, Ibid.
14 – Eric Knorr, “Blueprint for Web Services,” InfoWorld Vol. 25, No. 47 (December

2003).
15 – Diana Mungai, Dianne Jones, and Lorna Wong, “Games to Teach By,” Proceedings

of the 18th Annual Conference on Distance Teaching and Learning (Madison,
Wisconson, 2002).

 13

16 – See, for instance, Katrin Becker, “Teaching With Games: The Minesweeper and

Asteroids Experience,” The Journal of Computing in Small Colleges, Vol. 17, No. 2
(December 2001); Ray Giguette, “Pre-Games: Games Designed to Introduce CS1
and CS2 Programming Assignments,” Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, Vol. 35 No. 1 (January 2003).

17 – Randolph M. Jones, “Design and Implementation of Computer Games: A Capstone
Course for Undergraduate Computer Science Education,” Proceedings of the 31st
SIGCSE Technical Symposium on Computer Science Education, Vol. 32 No. 1
(March 2000).

18 – Jones, Ibid.
19 – For another take on integrating web services into an upper-level course, see Marty

Humphrey, “Web Services as the Foundation for Learning Complex Software
System Development,” Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, Vol. 36 No. 1 (March 2004).

 14

