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ABSTRACT 
This paper discusses the concept of enumerability of infinite sets. This 
concept is applied in a number of areas, including Data Models & Query 
languages, Hypothetical Reasoning with Intuitionistic Logic, and 
Sequential Query languages.  However, the concept is lost on most 
students, due to the fact that the Concept of enumerability is lost on 
them. 
 

With the introduction of a new way to look at cardinality and 
enumerability of infinite sets, the students have found this a better way 
of looking at infinite sets, and have easily been able to apply it to the 
various areas needed. 
 

Keywords: sets, cardinality, enumerable, infinite sets, languages. 

 

1. Introduction 
 

The concept of infinitely enumerable sets is used widely in many areas of 
Computer Science.  Some of these areas include: 

      Data Models & Query languages [1] 

      Hypothetical Reasoning with Intuitionistic Logic [2] 

      Sequential Query Languages [3,4] 

      Proof of the existence of noncomputable problems like the Halting 
Problem [5,6] 

  to name but a few. 

 

The understanding of this concept is convoluted due to the abstractness, and 
yet imprecise definitions given of cardinality of sets. 

 

The concept used in most Discrete Mathematics books in introducing the 
concept of enumerability (which in some cases is erroneously called 
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countability) of infinite sets is that of set-cardinality and one-to-one 
correspondences. 

 

The texts normally imply that two sets are of equal cardinality if the 
number of elements in each are the same.  This statement is true for finite 
sets.  For infinite sets, however, this premise does not hold --- but since not 
clearly stated, it leaves the feeling, to most students and readers, of it being a 
concept to be believed without thorough validation. 

 

This Paper describes how this concept has been taught in the Department 
of Computing Science, at the University of Guelph, in the CIS4600 Course 
(Theory of Computation), and how it has enabled the Students to easily apply it 
in the various fields of application. 

 

2. Overview  
 

A brief description of why the concept of infinite enumerability evades most 
students and readers, and why it is important to understand them, including 
examples of application. 
 
Also pitfalls in using basic concept of cardinality, as defined uniformly for 
finite and infinite sets. 
 
Cardinality of a set is said to be the number of elements in the set. 
 
Two sets S1 and S2 are said to be of the same cardinality, if there is a relation 
that maps every element of the set S1 to the set S2 and vice-versa. Using the 
cardinality notation, |S1| = |S2|. 
 
This definition works well for finite sets, but is rather confusing for infinite 
sets. 
 
 
Example 2.1:  The set of positive even numbers E is said to have the same 
cardinality as the set of Natural numbers N.  
 
 
 0 1 2 3 .  .  . 
 
 
 

 0 2 4 6 .  .  . 
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And yet, when we consider the two sets E and N, we find that N – E, that all 
the elements that are in N and that are not in E is the set of odd numbers O, 
which also happens to have the same cardinality as the set N Natural numbers. 

The set O is depicted in the Figure below by the red numbers on the lower row. 

 

 0 1  2  3 .  .  . 
 
 
 

 0   1 2   3 4    5  6   7 .  .  . 
 

Now this tends to depict that though the two sets are said to be of the same 
cardinality, they cannot not be said to have the same number of elements, and 
therefore they are not of the same size.  Although we can say that they are of 
the same relative-size. 

2.1 Sets and Enumerability 
 
Let us consider the standard definitions of sets, subsets, and bijection (1-1 and 
Onto) mappings. 
 
A set is a collection of objects.  A set A is said to be a subset of a set B (A ⊆ B) 
if all elements in A are also in B. It is said to be a proper subset of B  (A ⊂ B) if 
it is a subset of B and there is at least one element in B that is not in A. 
 
 In discussing functions, we talk about two sets: the Domain and the 
Range.  If A and B are sets, then f is a function from A to B (f: A → B) if for 
every element x in A, there is an element y in B, such that f maps x onto y. A is 
said to be the Domain of the function, and B the Range. 
 
 A function (a mapping) (f: A → B) is said to be one-to-one (1-1) if f 
maps every element x in A to a unique element y in B (i.e. no two x’s share the 
same value y).  Thus for f: R → R 1 f(x) = x2 is not 1-1, since (-12) =  12 = 1, 
whereas f(x) = x + 1 is 1-1. 
 
 A function (or mapping) f: A → B is onto if every element of B is 
mapped onto by some element in A. 
 
Thus if f: N → N [N = {0, 1, 2, …}] then f(y) = 2x + 1 is not onto, since 4 ∈ N is 
not mapped onto by any x ∈ N.  However, for the same function, on the 
domain and range: f: R → R, f is onto. 
 
A function is said to be bijective, if it is 1-1 and onto. 

                                         
1 Note that R here denotes the set of Real Numbers. 
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Figure 2.1 illustrates some examples of the different types of Functions. 
 

 
 

Figure 2.1 
 

3. Enumerability of Sets 
 
New Definition:   A set, A, is said to be enumerable if there is a bijection 
between A and a subset of natural numbers N. 
 

This definition applies both to finite and infinite sets.  For finite sets, this 
would imply that, say if M ⊂ N, and g1: M → A is a bijective function, then M 
has the same cardinality (and in fact the same size) as A. 

 

 On the other hand, a bijection between N and an infinite set B does not 
imply that they are the same size – but rather that there is an ordering – where 
indeed we can label the 1st element of B, the 2nd element etc. 

 

 An example, is enumerating valid programs in a programming langrage 
(say C).  We start from a program with no lines of code (0) (if valid), then 
lexicographically all valid programs with 1 character, etc. 

 

 Indeed the relation, in this case, as in the case of f:N→E in Example 2.1 
does imply a bijective function, but not that the two infinite sets are the same 
“size”. 

 

 The other notion, about “counting”, is that counting does imply a 
complete, or heading to completion term.  In other words, a set is countable if 
we can “count” and finish “counting”.  And thus two sets are of the same size 
(cardinality) if we can count one, and the other, and see that the finished 
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number is the same. Indeed cardinality of infinite sets takes on a different 
meaning that this. 

 

 This new understanding, of infinite sets being enumerated, as opposed 
to being “counted” gives credibility and logic to the subject matter.  We are 
just ordering, and not counting. 

4. Application 
 

 One of the areas of application of this concept is in the Proof of the 
existence of noncomputable problems like the Halting Problem [5,6].  Below 
we give a brief description of the Halting Problem and outline it’s proof.  This 
proof was demonstrated to the CIS4600: Theory of Computation class, at the 
University of Guelph, with much success after an understanding of the concept 
of enumerability.  

 

The halting problem can be described as follows:  It asks whether there 
is a procedure that there is a procedure that: takes as input, a computer 
program, and input to the program, and determines whether the program will 
eventually stop when run with this input.  This would be a good program to 
have for Software Verification purposes. 

4.1 Definition of the Halting Problem  
•  Input:   Turing Machine M   &   Input x  
•  Question:  Does Turing Machine M halt on input x?  

 

4.2 Language Theory Version of the Halting Problem 
•   We use M to represent both the abstract Turing Machine M and its 

string representation. Likewise, we use x to represent both the 
abstract input x and its string representation.  

•   H = {M;x | M halts when given input x}  
•    Question: Is y in H?  

 

4.3 Theorem: H is not recursive 

Proof: Diagonalization Proof [9] 

1. Each Turing Machine is represented by some string over our alphabet.  
2. Let E be an enumeration of all these strings (and thus all Turing 

Machines).  
3. Assume that H is recursive.  
4. This implies that there exists a TM MH which decides H.  
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5. Use TM MH and enumeration E to construct a Turing Machine D which 
differs from each Turing Machine in E.  

6. This creates a contradiction as E is an enumeration of all Turing 
Machines  

7. Thus, our assumption in step 3 must be incorrect.  
8. Thus, we conclude that H is not recursive.  

5. Student’s Reaction and Conclusions 
 
This concept of enumerability of infinite sets, as opposed to countability, was 
taught to the CIS4600: Theory of Computation class, at the University of 
Guelph.  The students were able to have a much better appreciation to 
cardinality of infinite sets, and their enumerability.  This was demonstrated in 
their class participation, and their ability to apply it both to abstract and 
practical assignment problems. 
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