
Bits: a Bayesian Intelligent Tutoring System For Computer Programming

C.J.Butz, S.Hua, R.B.Maguire
Department of Computer Science, University of Regina

Regina, SK, Canada, S4S 0A2
{butz, huash111, rbm }@cs.uregina.ca

Abstract: In this paper, we present a Bayesian intelligent
tutoring system for computer programming, called Bits. Our
system takes full advantage of Bayesian networks (BNs), which
are a formal framework for uncertainty management. We
discuss how to employ BNs as an inference engine to guide the
students’ learning process. In addition, we describe the
architecture of Bits and the role of each module in the system.
Bits has been implemented and will be employed in an
upcoming introductory programming course at the University of
Regina.
Keywords: Intelligent tutoring system, Bayesian networks,
educational tools for learning

1. Introduction

The motivation for developing our Bayesian intelligent
tutoring system (Bits) can be easily understood with the
following example. A student in an introductory computer
programming course states that she does not understand the
For-Loop construct. During the explanation of the For-Loop
construct, the class instructor realizes that the student does not
understand relational operators, which are the prerequisite to the
For-Loop construct. In other words, although the student
claimed to not understand the For-Loop construct, the real
problem actually involved a different, prerequisite concept.
Thus, there is a clear need to automate this exchange, namely, to
develop a tutoring system that can help guide a student through
the introductory programming concepts.

Obviously, there is a certain amount of uncertainty built into
this process. For instance, a student may truly believe she
understands a concept when in fact she doesn’t. To manage the
uncertainty, we adopt Bayesian networks (BNs) [4,5,6], which
utilize probability theory as a formal framework for uncertainty
management. BNs have been successfully applied in practice to
a wide variety of uncertain problems, including the jet
propulsion systems on NASA’s space shuttles [1], and Office
Assistant in the Microsoft Windows operating system [2].

The rest of this paper is organized as follows. In Section 2,
we described the modules comprising the Bits architecture. A
sample session is outlined in Section 3. The conclusion is
presented in Section 4.

2. General Architecture of Bits

In this section, we outline the major components of our

system and describe how they interact with each other.
To simplify the task of developing an intelligent tutoring

system, we restrict the scope of the problem as follows. First,
the system is built to tutor students using the C++ programming
language. Second, only elementary topics are covered, namely,
those typically found in a first course on programming. That is,
concepts such as variables, assignments, and control structures
are included, but more sophisticated topics like pointers and
inheritance are not. As illustrated in Figure 1, the four main
modules of Bits are Bayesian networks, the knowledge base, the
user interface, and the study module. These components are
examined in the following subsections.

Study Module

Student

Quick Study

Regular Study

Problem Study

User Interface

Input
– Answers for sample quizzes
– Choosing a study goal
– Stating known topics

Output
– Lecture notes
– Sample quizzes
– Recommendations

Bayesian
Inference

(Assessment)

Knowledge Base
– Lecture notes
– Sample quizzes
– Solution keys

Figure 1 Architecture of Bits.

2.1 Bayesian networks

The key to aid the student to navigate through the concepts is
two-fold. On one hand, the prerequisite information has to be
modeled. On the other hand, we need to keep track of student
knowledge regarding each concept. Bayesian networks can help
us meet both of these objectives.

A Bayesian network (BN) [4,5,6] consists of directed acyclic
graph (DAG) and a corresponding set of conditional probability
distributions (CPDs). Based on the probabilistic conditional
independencies [6] encoded in the DAG, the product of the
CPDs is a joint probability distribution (jpd). In other words,
Bayesian networks serve as both a semantic modeling tool and
an economical representation of a jpd. There are many inference
algorithms in BNs for computing probabilities of variables
given other variables to take on certain values. For example,
given that variable B has value b and variable D has value d,
what is the probability that variable A is a? There are also
numerous implementations of BN software [3].

For our purposes, we identified a set of concepts that are
taught in CS110 (the first computer programming course at the
University of Regina). Each concept is represented by a node in
the graph. We add a directed edge from one concept (node) to
another, if knowledge of the former is a prerequisite for
understanding the latter. Thus, the DAG can be constructed
manually with the aid of the course textbook. For example,
consider one instance of the For-Loop construct in C++ such as

for (i=1; i<=10; i++);
To understand the For-Loop construct, one must first

understand the concepts of Variable assignment, Relational
operators, and Increment (decrement) operators. These
relationships can be modeled as depicted in Figure 2. Naturally,
Figure 2 depicts a small portion of the entire DAG implemented
in Bits.

For Loop

Variable Assignment Relational Operators Increment/Decrement
operators

Figure 2 Sub-DAG for the For-Loop construct.

The next task in the construction of the BN is to specify a
CPD for each node given its parents. For variable ai with parent
set Pi, a CPD p(ai|Pi) has the property that for each
configuration (instantiation) of the variables in Pi, the sum of the
probabilities of ai is 1.0. In Figure 2, the parent set of the
For-Loop node is {Variable assignment, Relational operators,
Increment /decrement operators}. The corresponding CPD

(| , , /)p For Loop Assignment Relational Operators Incre Decrement operators−

is shown in Figure 3.

Parent Nodes For Loop
Variable

Assignment
Relational
Operators

Incre/Decrement
operators known not known

known
known

known 0.75 0.25
not known 0.39 0.61

not known
known 0.50 0.50

not known 0.22 0.78

not known
known

known 0.50 0.50
not known 0.29 0.71

not known
known 0.40 0.60

not known 0.15 0.85

Figure 3 The CPD corresponding to the For-Loop node in Figure 2.
 All CPDs for the DAG were obtained from the results of
previous CS110 final exams. We first identified the concept
being tested for each question. If the student answered the
question correctly, then we considered the concept known.
Similarly, if the student answered the question incorrectly, then
we considered the concept unknown (not known). The

probability of each concept being known, namely, p(ai= known),
can then be determined. Moreover, we can also compute
p(ai=known, Pi=known), i.e., the probability that the student
correctly answers both the concept ai and the prerequisite
concepts Pi. From p(ai=known, Pi=known), the desired CPD
p(ai=known | Pi=known) can be obtained. Thereby, we can
calculate every CPD for the entire Bayesian network.

2.2 Knowledge Base

The knowledge base contains the class lecture notes in the
form of web pages, a repository of sample tests, which are in the
form of interactive flash multimedia files, and solution keys.
Both the lecture notes and quizzes are organized by concept.
This allows the concepts to be indexed and retrieved efficiently.

The class lecture notes are displayed while the user is
learning a new concept. On the contrary, a sample quiz is
displayed when Bits is trying to determine whether or not a
student has understood a particular concept.

 2.3 User Interface Module

A student interacts with Bits through the user interface
module. This interaction is partitioned into two sub-modules; an
input module for input from a student to Bits, and an output
module for output from Bits to a student.

The output module displays the class lecture notes through a
web browser. It uses dialog boxes to display quizzes and offer
pedagogical suggestions.

The primary goal of the input module is to update the BN
based on evidence collected from the student. There are two
ways in which the student can enter information into Bits:

(a) Direct input,
(b) Select multiple-choice answer in sample quiz.
For (a), after the student has finished reading the displayed

lecture notes, Bits will ask the student to select one of the three
options: (i) I understand this concept, (ii) I don’t understand this
concept, or (iii) I am not sure (quiz me).

If either of the first two choices is selected, then the BN can
be immediately updated. On the other hand, the last choice leads
to the second type of input.

In case (b) when the student is not sure about a concept, Bits
will retrieve the appropriate quiz from the knowledge base and
present it to the student. The question(s) are multiple choice.
After the student inputs the answer, Bits compares the answer
with the solution key. Bits then gives the student immediate
feedback and updates the BN accordingly.

2.4 Study Module

The study module guides the student through the class
concepts using three sub-modules called Regular Study,
Problem Study, and Quick Study.
2.4.1 Regular Study
 We keep track of the student’s knowledge of a concept using
three categories; (i) known, (ii) ready to learn, and (iii) not
ready to learn. A concept is considered known if the BN
indicates a probability greater or equal to 0.70. A concept is
marked ready to learn if the probability is less than 0.70 and all
of the parent concepts are known. Finally, a concept is labeled
not ready to learn, if at least one parent concept is not known.
 When Bits is first started, the concepts are labeled based on
the initial probabilities obtained from the BN. Traffic signs are
employed as follows: yellow (known), green (ready to learn),
and red (not ready to learn), as illustrated in Figure 4. A student
can select a green topic in Figure 4. The lecture notes on the
chosen topic are then displayed. For example, if the student
chooses the green concept “Floating-point numbers” in Figure 4,
Bits displays the lecture notes in Figure 5.

Figure 4 Navigation Menu: green means “ready to learn,” yellow

means “already known,” and red means “not ready to learn.”

 After reading the lecture notes, the student selects one of the
following three choices:

(a) I understand this concept;
(b) I don’t understand this concept;
(c) I am not sure if I understand this concept,

as shown in the bottom right corner of Figure 5.
 If the student selects (a), then the BN is updated and the
Navigation Menu is again shown. If (b) is selected, then
additional help is required. We will discuss this in the next
subsection. If (c) is selected, the sample quiz on this topic is
retrieved from the knowledge base and shown to the student.
The student answers the question and Bits can give immediate
feedback to the student, such as the correct solution to the
question, and decides whether (a) or (b) is appropriate. Again, if

(a), then the Navigation Menu is refreshed. We discuss (b) next.

Figure 5 Lecture notes for concept “Floating-point-numbers.”
2.4.2 Problem Study
 This module is useful when a student indicates that a concept
is not understood. One possibility is to simply ask the student to
read the lecture notes again. However, Bits is designed to show
the student both the concept to be learned and the prerequisite
concepts of this topic, namely, the parents of the concept in the
BN.
 The student is given the flexibility to revisit the prerequisite
concepts to confirm that they are indeed understood. The
rationale is that a student may believe that a prerequisite
concept is understood when in fact it is not.
2.4.3 Quick Study
 A student may want to learn a particular topic without
learning every single topic. For example, a student may want to
learn “File I/O” for an impending exam or assignment deadline.
The student would then like to learn the minimum set of
concepts in order to understand the chosen concept.
 Bits meets this need with the Quick Study sub-module. The
student is allowed to select a “not ready to learn” concept in the
Navigation Menu. In this situation, Bits will display a learning
sequence for the chosen topic. In other words, all necessary
ancestral concepts in the BN will be shown to the student in a
proper sequence for learning.
 For example, suppose the student selected the not ready to
learn concept “File I/O” in the Navigation Menu of Figure 4.
Then Bits displays the ancestral concepts in order, grouping by
“known” and “unknown”, namely, “overview of programming”
marked by “known”, and “programming language,” “output,”
“input” marked by “unknown”, as depicted in Figure 6. The
student needs to learn “programming language,” “output” and
“input” first.

Figure 6 The Quick Study menu generates a learning sequence for the

concept “File I/O” in Figure 4, which is “not ready to learn.”

3. A Sample Session

When Bits starts, the Navigation Menu is displayed. The
student can either study any topic that is marked “ready to
learn,” or ask for the minimum set of topics to be learned in
order to quickly learn a topic marked “not ready to learn.”

Suppose the Navigation Menu in Figure 4 is displayed to the
user. The left side indicates, for instance, that the concept
“overview of programming” is already known, the concept
“Floating point numbers” is ready to learn, and the concept
“File I/O” is not ready to learn.

3.1 Regular Study

 In this situation, the student selects any topic that is marked
ready to learn. For example, if the student selects
“Floating-point numbers” in Figure 4, then the lecture notes for
this concept are displayed, as shown in Figure 5. After reading
the notes, the student selects one of the choices at the bottom
right of Figure 5. If the student indicates that she understands
floating point numbers, then the BN is updated and the
Navigation Menu is again displayed (but this time the concept
floating point numbers will be labeled as known).

3.2 Problem Study

 If the student indicates that the concept is not understood after
reading the lecture notes, then Bits displays the prerequisite
concepts. Again using Figure 5 as an example, the prerequisite
concepts are displayed, similar to that illustrated in Figure 6.
Here Bits confirms that each of the prerequisite concepts is
understood. Only afterwards does Bits go back to the problem
concept (Figure 5).

3.3 Quick Study

 In some situations, a student may want to quickly learn a
particular concept. For instance, a student may want to learn
“File I/O” without learning all of the concepts discussed in the
class textbook leading up to the discussion on this topic. In
other words, the students wishes to learn the minimal set of
concepts needed to understand “File I/O” concept.
 Bits facilitates this procedure by allowing the student to select
a “not ready to learn” concept in the Navigation Menu. For
example, using Figure 4 as the instance of the Navigation Menu,
the user can select “File I/O” from the left side. Bits then
displays the ancestor concepts of “File I/O” in the BN, as
depicted in Figure 6. Then student then selects the first
unknown concept shown in the top box of Figure 6. After this
concept is understood, the student selects the second concept,
and so on.

4. Conclusions And Future Work

This paper discusses a new architecture of designing an ITS
(Bits) for computer programming using Bayesian technology.
Centering on the explicit structure and the contents of each
component of the architecture, we described the concept and
realized the prototype of Bits. Bits provides remote access to
hypermedia-structured learning material which includes
instruction notes, tests, and examples. Unlike traditional web
based education tools, Bits provides the learner with intelligent
navigation support, recommendation, and integrates the features
of an electronic hypermedia textbook with intelligent tutoring
tactics. Bits can propose learning goals and guide users by
generating reading sequences for them.

Future work will involve incorporating the more sophisticated
concepts of C++ into Bits. We also hope to extend Bits by
incorporating other programming languages such as Java.

References
[1]. E. Horvitz, E., M. Barry, “Display of Information for Time

Critical Decision Making,” Proceedings of Eleventh
Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann, San Francisco, pp. 296-305,1995.

[2]. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K.
Rommelse, “The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of Software
Users,” Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, Madison, WI, pp.
256-265, 1998.

[3]. http://www.ai.mit.edu/~murphyk/Bayes/bnsoft.html
[4]. J. Pearl. Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference, Morgan Kaufmann, San
Mateo, CA, 1988.

[5]. S.K.M. Wong and C.J. Butz, “Constructing the
Dependency Structure of a Multi-Agent Probabilistic
Network,” IEEE Transactions on Knowledge and Data
Engineering, 13(3): pp. 395-415, May 2001.

[6]. S.K.M. Wong, C.J. Butz, and D. Wu, “On the Implication
Problem for Probabilistic Conditional Independency,”
IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, 30(6): pp.785-805,
November 2000.

