
Intricacy of Concurrent Programming

K. Alagarsamy
Department of Computer Science

University of Northern British Columbia
Prince George, BC, Canada - V2N 4Z9

csalex@unbc.ca

Abstract

Concurrency has become an inevitable phenomenon of present-day computing. Therefore, teaching
concurrent programming is increasingly becoming an integral part of most computer science
programs. Concurrent programs are notorious for subtle errors. In this paper, we will attempt to
explain the complexity involved in concurrent programming by examining some widely studied
concurrent algorithms. We expose the inaccuracy or incorrectness in observing some of the basic
properties of these algorithms through a careful analysis. We feel that this exercise would help the
developers (instructors, students, and programmers) to understand the importance of the level of
attention needed, while designing or studying concurrent programs.

Keywords: Concurrency, distributed coordination, and mutual exclusion.

1. Introduction

Concurrency has become an inevitable phenomenon of present-day computing. The technological
developments in the software and hardware industries and users' demands in various fields are
paving the way to incorporate concurrent and distributed processing in most software systems and
applications. Therefore, teaching concurrent programming is becoming an integral part of most
computer science programs.

Mutual exclusion problem is one of the important concurrent programming problems investigated,
as early as 1962[3]. In this paper, we analyze the mutual exclusion algorithms by Dekker[4],
Dijkstra[3], Knuth[7], Lamport[9], and Peterson[12]. We choose these algorithms for our analysis
because they are (1) thoroughly studied and extensively referred in most text books and research
reports on this subject and (2) relatively simpler compared to most of the other later algorithms to
solve mutual exclusion problem.

Concurrent programs are extremely hard to design1 and notorious for subtle errors. We will attempt
to explain the subtlety of concurrent programs by systematically exposing some of the evasive
properties of these algorithms. The properties we will study are: generalization, non-circularity,
and bound on bypass. First we will introduce the system and the problem statement followed by
brief descriptions of the algorithms by Dekker, Dijkstra, Knuth, Lamport, and Peterson. Then we
will analyze Dekker’s algorithm and Dijkstra’s algorithm for generalization concept, and the
algorithms of Dekker, Knuth, and Lamport for non-circularity, and finally, Peterson’s algorithm for
bounded-bypass.

1 “The problem has been solved for two processes by T.J. Dekker in the early sixties. It has been solved by
me for the n processes in 1965. The solution for two processes was complicated; the solution for n processes
was terribly complicated. (The program pieces for "enter" and "exit" are quite small, but they are by far the
most difficult pieces of program I ever made)”. – Dijkstra.

2. System Model and Problem Statement

We assume a system of n independent cyclic processes competing for a shared resource R. In a
process p, the part of the code segment that accesses R is called a critical section (CS) of p for the
resource R [4]. The mutual exclusion problem is to design an algorithm that assures the following
properties:

1 At any time, at most one process is allowed to access the shared resource. Equivalently, at any

time, at most one process is allowed to be in the CS (Safety).
2. When one or more processes have expressed their intentions to access the shared resource, one

of them eventually accesses (Liveness).

In addition to these two essential properties, the following are the desirable properties:

3. Any process that expresses its intention to access the shared resource will be able to do so in

finite time (Freedom from Starvation).
4. If any process expresses its intention to access the shared resource, then it will not be bypassed

by other processes more than a fixed number of times to access the shared resource (bounded
bypass).

The mutual exclusion algorithm has essentially two components: entry code and exit code. These
pieces of codes have to be inserted before and after the CS into the code segment of each processes
to ensure mutually exclusive access to the CS.

3. Algorithms Review

Here we briefly review the algorithms of Dekker, Dijkstra, Knuth, Lamport, and Peterson.

3.1 Dekker’s Algorithm

In Dekker's algorithm, a process accesses the shared resource straight away when the other process
is not competing for it. When both processes are simultaneously interested in accessing the shared
resource the tie is broken by allowing the process which accessed the shared resource least recently
to succeed.

The algorithm uses three binary variables c1, c2, and turn. The variables c1 and c2 are used to
indicate the processes’ status in the competition for the shared resource and the turn variable is used
to break the tie. That is, the process which holds the turn is allowed to access the shared resource
next. After completing the shared resource access the turn is given to the other process. For better
readability, we rename c1 and c2 as status[1] and status[2], define the variable other as 3-i where i
may take the value either 1 or 2, out as 0, and competing as 1. The status bits are initialized to out.
The formal code for process i is given in Figure 1.

2

 Process i:

 status[i] := competing;
 while(status[other] = competing)
 {
 if(turn = other)
 {
 status[i] := out;
 wait until(turn = i)
 status[i] := competing;
 }
 }
 CS;
 turn := other;
 status[i] := out;

 Figure 1. Dekker’s Algorithm.

3.2 Dijkstra’s Algorithm

The basic idea behind Dijkstra’s algorithm is that: (i) a process which captures the turn successfully
is allowed to access the shared resource; (ii) a process can capture the turn only if it is free. In a
concurrent competition, more than one process may capture the turn simultaneously. Therefore, a
process after capturing the turn, checks to see whether any other process has grabbed the turn after
that. If so, then it restarts its competition for turn again. Since the turn variable can hold only one
value at a time, eventually one process will succeed in capturing it and that process will advance
further to access the shared resource. The 2-process version of Dijkstra’s algorithm is given in
Figure 2.

 Process i:

 status[i] := competing;
 do
 {
 while(turn ≠ i)
 {
 status[i] := out;
 if(status[turn] = out) then turn := i;
 }
 status[i] := cs;
 } while(status[other] = cs);
 CS;
 status[i] := out;

 Figure 2. Dijkstra’s Algorithm (2-process version).

3

3.3 Knuth’s Algorithm

In Knuth’s algorithm, all the processes are kept in a logical circle and the turn goes around the
circle giving each process a chance to access the shared resource. If the process corresponds to the
current turn is not interested in accessing the shared resource, then the turn goes to the next closest
competing process. We denote HPP(i) as the set of processes with priority higher than that of i. The
algorithm is given in Figure 3.

 Process i:

 repeat
 {
 status[i] := stage1;
 wait until(∀ j ∈ HPP(i), stage1[j] = out)
 status[i] := stage2;
 }until (∀ k ≠ i, status[k] ≠ stage2)
 turn := i;
 CS;
 if(i = n) then turn := 1; else turn := i+1;
 status[i] := out;

 Figure 3. Knuth’s Algorithm.

3.4 Lamport’s Algorithm (Bakery Algorithm)

Lamport’s algorithm is based upon the service strategy commonly used in bakeries (hence the name
Bakery Algorithm). A process chooses a token number upon entering the competition for shared
resource. The holder of the lowest token number is the next one to be served. If two processes
choose the same token number due to concurrency, then the process with lowest id goes first. The
algorithm is given in Figure 4.

 Process i:

 choosing[i] := 1;
 number[i] := 1+maximum(number[1], …, number[n]);
 choosing[i] := 0;
 for j := 1 to n
 {
 wait until (choosing[j] = 0)
 wait until ((number[j] = 0) or ((number[j],j) ≥ (number[i],i)))
 }
 CS;
 number[i] := 0;

 Figure 4. Lamport’s Algorithm.

4

3.5 Peterson’s Algorithm

The basic idea behind Peterson's algorithm is that each process has to pass through n-1 stages to
access the shared resource. These stages are designed to block one process per stage so that after n-
1 stages only one process will be eligible to access the shared resource. A process can move to next
stage only if it is either pushed by some other process or all other processes are in stages below its
own. A non-competing process is considered to be at stage 0. The algorithm is given in Figure 5.

 Process i:

 for j := 1 to n-1
 {
 Q[i] := j;
 TURN[j] := i;
 Wait until(∀ k ≠ i, Q[k] < j) or (TURN[j] ≠ i)
 }
 CS;
 Q[i] := 0;

 Figure 5. Peterson’s Algorithm.

4. Analysis

In this section, we briefly discuss the observations from the analysis of the above five algorithms
with respect to generalization, non-circularity, and bounded bypass properties. We first explain the
concept/property and then present our observation.

4.1 Generalization

Generalization is a powerful tool used to devise solutions to complex problems since time
immemorial. The idea is that first deal with something familiar and concrete version of the problem
that is easy to work with. If a solution is obtained for the simplified version, then with that
experience the abstract properties of the problem (that is, the more generic cases) may be treated
easily. The advantage with this approach is that in many cases the observations from the solution of
the concrete or simplified case will lead to easily extend the obtained solution to solve the more
general case. Unfortunately, in many cases such a generalization of solutions is difficult or
impossible and requires different approach to obtain the solution for the general case of the
problem. We reproduce two popular definitions of generalization, below, for our reference.

Definition 1: Generalization is passing from the consideration of a restricted set to that of a more
comprehensive set containing the restricted one. - George Polya[13].

Definition 2: A method of generalization is not uniquely determined, for there are usually
numerous ways of carrying it out. One requirement, however, must be rigorously satisfied: any
generalized concept must reduce to the original one when the original conditions are fulfilled.
Albert Einstein and Leopold Infeld[5].

5

From the above two definitions of generalization, we can easily infer that any generalization should
logically include the original one.

Dijkstra has never claimed his algorithm as a generalization of Dekker's algorithm. However, many
researchers and most text books on this subject refer so. Even the recent references [1,2] confirm
such a myth that Dijkstra's algorithm is a generalization of Dekker's algorithm. The differences
between Dekker's algorithm and Dijkstra’s algorithm are significant even when n=2 and that
violate the basic requirement of generalization, which we have discussed above.

Theorem 4.1.1 Starvation is not possible in Dekker’s algorithm.

Proof: In Dekker’s algorithm, the tie is broken by favoring the process which accessed the CS
“least recently”. This policy allows the turn to go between the competing processes alternatively.
Therefore, no starvation is possible.

Theorem 4.1.2 Dijkstra’s algorithm is susceptible to starvation, even when n = 2.

Proof: In Dijkstra’s algorithm, the tie is broken by favoring the process which accessed the CS
“most recently”. This policy might lead to starvation if the process, which holds the current turn, is
continuously interested in accessing the CS.

From Theorems 4.1.1 & 4.1.2, it is clear that Dijkstra’s algorithm cannot be considered as a
generalization of Dekker’s algorithm.

4.2 Non-circularity Property

The property of not assuming atomicity on read and write operations has been referred in the
literature as non-circularity property. The mutual exclusion algorithms with non-circularity
property are called non-atomic algorithms. It was widely believed that the read and write operations
on an individual memory word are atomic (mutually exclusive) is a required assumption for any
mutual exclusion algorithm of shared memory systems. This belief was observed as incorrect by
Lamport in [10], referring that Bakery algorithm does not require such assumption. Recently, in [1],
bakery algorithm has been credited as the first non-atomic algorithm to assure mutual exclusion.
However, it is interesting to know that Dekker’s algorithm and the algorithm by Knuth, proposed
more than eight years before Bakery algorithm was published, are indeed non-atomic algorithms
assuring safety and liveness properties.

Consider Dekker’s algorithm. In that, a process writes its status value, to indicate its competition
for the CS, before reading the status value of the other process. Since the operations within a
process are sequential, at least one write should precede both reads. That means, at least one
process can observe the status value of other process correctly, and therefore it cannot come out of
the while-loop. Thus, mutual exclusion will be preserved always in Dekker’s algorithm irrespective
of whether the operations are atomic or not. The similar argument is valid for Knuth’s algorithm.

Theorem 4.2.1 Atomicity assumption is not required to assure the safety property of the algorithms
by Dekker and Knuth.

6

4.3 Bound on Bypass

When several processes are competing for a shared resource, some later processes may overtake or
bypass other earlier processes. This may happen due to different execution speeds of the processes.
The bound on the number of bypass over a process in an algorithm indicates the fairness assurance
of that algorithm. Peterson has never claimed that his algorithm assures bounded bypass. But,
independently, the bound of Peterson’s algorithms has been computed by different researchers as
follows: Raynal[14] computed the bound as n(n-1)/2; Kowaltowski and Palma[8] claimed it as n-1;
and Hofri[6] derived it as n-1.

Consider the following scenario. The processes p1, p2, and p3 are currently competing for the CS.

• Process p1 starts first, sets Q[p1] := 1,
• p3 starts and sets TURN[1] := p3,
• p2 sets TURN[1] := p2 and so p3 is pushed,
• since the condition (∀ k ≠ p2, Q[k] < 1) or (TURN[1] ≠ p2) is not true, p2 is blocked at

stage 1,
• p3 crosses stage 1 to stage 2,
• since the condition (∀ k ≠ p3, Q[k] < j) is true, for j ≥ 2, it keeps proceeding further,

enters the CS, and completes its CS execution,
• p3 starts competing again for the CS, and sets TURN[1] := p3,
• the condition (TURN[1] ≠ p2) becomes true, that is, p2 is unblocked and p3 is blocked

at stage 1,
• p2 moves up all the way, enters and leaves the CS, starts competing again, and sets

TURN[1] := p2,
• this time p2 gets blocked and p3 is unblocked, at stage 1, and
• p2 and p3 can overtake p1, alternately, several times until p1 sets TURN[1] := p1.

Therefore, there is no bound on the number of possible bypasses in Peterson’s algorithm.

5. Conclusion

Concurrent programs are extremely hard to design and notorious for subtle errors. Slips are often
possible while characterizing, designing, and proving the properties of concurrent programs. In this
context, precise understanding of the concepts and ideas are extremely important and any
misleading interpretations or references about popular algorithms will only add further complexity
to the subject matter.

As a result of these observations, we feel that, (i) any error or inaccuracy observed should be
disseminated to the scientific community as soon as they are identified. This may increase the
clarity of the subject matter and avoid cascading or perpetual errors in concurrent programs; (ii) a
systematic approach (structured software engineering techniques and tools) to design concurrent
programs would help to alleviate the intricacy involved in it, and (iii) more importantly, it is
essential to understand and accept that a different mindset[15] is required to design concurrent
programs.

References

1. J. Anderson, "Lamport on Mutual Exclusion: 27 Years of Planting Seeds", PODC, 3-12, 2001.

7

2. J. Anderson and Y. J. Kim, Shared-memory Mutual Exclusion: Major Research Trends Since
1986, Distributed Computing, 16:75-110, 2003.

3. E.W. Dijkstra, Solution of a Problem in Concurrent Programming Control, CACM,
Vol.8(9):569, 1965.

4. E.W. Dijkstra, Cooperating Sequential Processes (Techniche Hogeschool, Eindhoven, 1965).
Reprinted in: F. Genuys (ed.), Programming Languages, Academic Press, 43-112, 1968.

5. Albert Einstein and Leopold Infeld, The Evolution of Physics – The Growth of Ideas from
Early Concepts to Relativity and Quanta, Cambridge University Press, 1971.

6. M. Hofri, Proof of a Mutual Exclusion Algorithm - A `class'ic example, ACM SIGOPS OSR
24(1):18-22, 1990.

7. D.E. Knuth, Additional Comments on a Problem in Concurrent Programming Control, CACM
9(5):321-322, 1966.

8. T. Kowalttowski and A. Palma, Another Solution of the Mutual Exclusion Problem, IPL (19),
3, 145-146, 1984.

9. L. Lamport, A New Solution of Dijkstra’s Concurrent Programming Problem, CACM
17(8):453-455, 1974.

10. L. Lamport, The Mutual Exclusion Has Been Solved, CACM 34(1):110, 119, 1991.
11. L. Lamport, Description about Bakery Algorithm – In My writings

http://research.microsoft.com/users/lamport/pubs/pubs.html.
12. .L. Peterson, Myths about the Mutual Exclusion Problem, IPL 12(3):115-116, 1981.
13. G. Polya, How to Solve It: A New Aspect of Mathematical Method, Princeton University Press,

1973.
14. M. Raynal, Algorithms for Mutual Exclusion, MIT press, 1986.
15. Resnick, Beyond the Centralized Mindset, Journal of the Learning Sciences, 5(1):1-22, 1996.

8

