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Abstract 

 
Concurrency has become an inevitable phenomenon of present-day computing. Therefore, teaching 
concurrent programming is increasingly becoming an integral part of most computer science 
programs. Concurrent programs are notorious for subtle errors. In this paper, we will attempt to 
explain the complexity involved in concurrent programming by examining some widely studied 
concurrent algorithms. We expose the inaccuracy or incorrectness in observing some of the basic 
properties of these algorithms through a careful analysis. We feel that this exercise would help the 
developers (instructors, students, and programmers) to understand the importance of the level of 
attention needed, while designing or studying concurrent programs.  
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1. Introduction 
 
Concurrency has become an inevitable phenomenon of present-day computing. The technological 
developments in the software and hardware industries and users' demands in various fields are 
paving the way to incorporate concurrent and distributed processing in most software systems and 
applications. Therefore, teaching concurrent programming is becoming an integral part of most 
computer science programs. 
 
Mutual exclusion problem is one of the important concurrent programming problems investigated, 
as early as 1962[3]. In this paper, we analyze the mutual exclusion algorithms by Dekker[4], 
Dijkstra[3], Knuth[7], Lamport[9], and Peterson[12]. We choose these algorithms for our analysis 
because they are (1) thoroughly studied and extensively referred in most text books and research 
reports on this subject and (2) relatively simpler compared to most of the other later algorithms to 
solve mutual exclusion problem.  
 
Concurrent programs are extremely hard to design1 and notorious for subtle errors. We will attempt 
to explain the subtlety of concurrent programs by systematically exposing some of the evasive 
properties of these algorithms. The properties we will study are: generalization, non-circularity, 
and bound on bypass. First we will introduce the system and the problem statement followed by 
brief descriptions of the algorithms by Dekker, Dijkstra, Knuth, Lamport, and Peterson. Then we 
will analyze Dekker’s algorithm and Dijkstra’s algorithm for generalization concept, and the 
algorithms of Dekker, Knuth, and Lamport for non-circularity, and finally, Peterson’s algorithm for 
bounded-bypass.

                                                           
1 “The problem has been solved for two processes by T.J. Dekker in the early sixties. It has been solved by 
me for the n processes in 1965. The solution for two processes was complicated; the solution for n processes 
was terribly complicated. (The program pieces for "enter" and "exit" are quite small, but they are by far the 
most difficult pieces of program I ever made)”. – Dijkstra. 

 



 
 
2. System Model and  Problem Statement 
 
We assume a system of n independent cyclic processes competing for a shared resource R.  In a 
process p, the part of the code segment that accesses R is called a critical section (CS) of p for the 
resource R [4]. The mutual exclusion problem is to design an algorithm that assures the following 
properties:  
 
1 At any time, at most one process is allowed to access the shared resource. Equivalently, at any 

time, at most one process is allowed to be in the CS (Safety). 
2. When one or more processes have expressed their intentions to access the shared resource, one 

of them eventually accesses (Liveness).  
 
In addition to these two essential properties, the following are the desirable properties: 
 
3. Any process that expresses its intention to access the shared resource will be able to do so in 

finite time (Freedom from Starvation).  
4. If any process expresses its intention to access the shared resource, then it will not be bypassed 

by other processes more than a fixed number of times to access the shared resource (bounded 
bypass). 

 
The mutual exclusion algorithm has essentially two components: entry code and exit code. These 
pieces of codes have to be inserted before and after the CS into the code segment of each processes 
to ensure mutually exclusive access to the CS. 
 
3. Algorithms Review 
 
Here we briefly review the algorithms of Dekker, Dijkstra, Knuth, Lamport, and Peterson.  
 
3.1 Dekker’s Algorithm 
 
In Dekker's algorithm, a process accesses the shared resource straight away when the other process 
is not competing for it. When both processes are simultaneously interested in accessing the shared 
resource the tie is broken by allowing the process which accessed the shared resource least recently 
to succeed.  
 
The algorithm uses three binary variables c1, c2, and turn. The variables c1 and c2 are used to 
indicate the processes’ status in the competition for the shared resource and the turn variable is used 
to break the tie. That is, the process which holds the turn is allowed to access the shared resource 
next. After completing the shared resource access the turn is given to the other process. For better 
readability, we rename c1 and c2 as status[1] and status[2], define the variable other as 3-i where i 
may take the value either 1 or 2, out as 0, and competing as 1. The status bits are initialized to out. 
The formal code for process i is given in Figure 1. 
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 Process i: 
  
             status[i] := competing; 
 while(status[other] = competing) 
 { 
  if(turn = other) 
  { 
   status[i] := out; 
   wait until(turn = i) 
   status[i] := competing; 
  } 
 } 
 CS; 
 turn := other; 
 status[i] := out;  
 
         Figure 1. Dekker’s Algorithm. 
 
 
 
3.2 Dijkstra’s Algorithm 
 
The basic idea behind Dijkstra’s algorithm is that: (i) a process which captures the turn successfully 
is allowed to access the shared resource; (ii) a process can capture the turn only if it is free. In a 
concurrent competition, more than one process may capture the turn simultaneously. Therefore, a 
process after capturing the turn, checks to see whether any other process has grabbed the turn after 
that. If so, then it restarts its competition for turn again. Since the turn variable can hold only one 
value at a time, eventually one process will succeed in capturing it and that process will advance 
further to access the shared resource. The 2-process version of Dijkstra’s algorithm is given in 
Figure 2. 
 
  
 Process i: 
 
             status[i] := competing; 
 do 
 { 
  while(turn ≠ i) 
  { 
   status[i] := out; 
   if(status[turn] = out) then turn := i; 
  } 
  status[i] := cs; 
 } while(status[other] = cs); 
 CS; 
 status[i] := out; 
 
          Figure 2. Dijkstra’s Algorithm (2-process version). 
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3.3 Knuth’s Algorithm 
 
In Knuth’s algorithm, all the processes are kept in a logical circle and the turn goes around the 
circle giving each process a chance to access the shared resource. If the process corresponds to the 
current turn is not interested in accessing the shared resource, then the turn goes to the next closest 
competing process. We denote HPP(i) as the set of processes with priority higher than that of i. The 
algorithm is given in Figure 3. 
 
         
             Process i: 
 
 repeat  
 { 
  status[i] := stage1; 
  wait until(∀ j ∈ HPP(i), stage1[j] = out) 
  status[i] := stage2; 
 }until (∀ k ≠ i, status[k] ≠ stage2) 
 turn := i; 
 CS; 
 if(i = n) then turn := 1; else turn := i+1; 
  status[i] := out; 
 
           Figure 3. Knuth’s Algorithm. 
 
 
3.4 Lamport’s Algorithm (Bakery Algorithm) 
 
Lamport’s algorithm is based upon the service strategy commonly used in bakeries (hence the name 
Bakery Algorithm). A process chooses a token number upon entering the competition for shared 
resource. The holder of the lowest token number is the next one to be served. If two processes 
choose the same token number due to concurrency, then the process with lowest id goes first. The 
algorithm is given in Figure 4. 
 
 
  
 Process i: 
 
             choosing[i] := 1; 
 number[i] := 1+maximum(number[1], …, number[n]); 
 choosing[i] := 0; 
 for j := 1 to n 
 { 
  wait until (choosing[j] = 0) 
  wait until ((number[j] = 0) or ((number[j],j) ≥ (number[i],i))) 
 } 
 CS; 
 number[i] := 0; 
  
            Figure 4. Lamport’s Algorithm. 
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3.5 Peterson’s Algorithm 
 
The basic idea behind Peterson's algorithm is that each process has to pass through n-1 stages to 
access the shared resource. These stages are designed to block one process per stage so that after n-
1 stages only one process will be eligible to access the shared resource. A process can move to next 
stage only if it is either pushed by some other process or all other processes are in stages below its 
own.  A non-competing process is considered to be at stage 0. The algorithm is given in Figure 5. 
 
 
 Process i: 
 
 for j := 1 to n-1 
 { 
  Q[i] := j; 
  TURN[j] := i; 
  Wait until(∀ k ≠ i, Q[k] < j) or (TURN[j] ≠ i) 
 } 
 CS; 
 Q[i] := 0; 
 
 Figure 5. Peterson’s Algorithm. 
 
 
 
4. Analysis 
 
In this section, we briefly discuss the observations from the analysis of the above five algorithms 
with respect to generalization, non-circularity, and bounded bypass properties. We first explain the 
concept/property and then present our observation.  
 
4.1 Generalization 
 

Generalization is a powerful tool used to devise solutions to complex problems since time 
immemorial.  The idea is that first deal with something familiar and concrete version of the problem 
that is easy to work with. If a solution is obtained for the simplified version, then with that 
experience the abstract properties of the problem (that is, the more generic cases) may be treated 
easily. The advantage with this approach is that in many cases the observations from the solution of 
the concrete or simplified case will lead to easily extend the obtained solution to solve the more 
general case. Unfortunately, in many cases such a generalization of solutions is difficult or 
impossible and requires different approach to obtain the solution for the general case of the 
problem. We reproduce two popular definitions of generalization, below, for our reference.  
 
Definition 1: Generalization is passing from the consideration of a restricted set to that of a more 
comprehensive set containing the restricted one.   - George Polya[13]. 
 
Definition 2: A method of generalization is not uniquely determined, for there are usually 
numerous ways of carrying it out. One requirement, however, must be rigorously satisfied: any 
generalized concept must reduce to the original one when the original conditions are fulfilled.  
Albert Einstein and Leopold Infeld[5]. 
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From the above two definitions of generalization, we can easily infer that any generalization should 
logically include the original one.  
 
Dijkstra has never claimed his algorithm as a generalization of Dekker's algorithm. However, many 
researchers and most text books on this subject refer so. Even the recent references [1,2] confirm 
such a myth that Dijkstra's algorithm is a generalization of Dekker's algorithm. The differences 
between Dekker's algorithm and Dijkstra’s algorithm are significant even when n=2 and that 
violate the basic requirement of generalization, which we have discussed above.  
 
Theorem 4.1.1 Starvation is not possible in Dekker’s algorithm. 
 
Proof: In Dekker’s algorithm, the tie is broken by favoring the process which accessed the CS 
“least recently”. This policy allows the turn to go between the competing processes alternatively. 
Therefore, no starvation is possible. 
 
 
Theorem 4.1.2 Dijkstra’s algorithm is susceptible to starvation, even when n = 2. 
 
Proof: In Dijkstra’s algorithm, the tie is broken by favoring the process which accessed the CS 
“most recently”. This policy might lead to starvation if the process, which holds the current turn, is 
continuously interested in accessing the CS. 
 
From Theorems 4.1.1 & 4.1.2, it is clear that Dijkstra’s algorithm cannot be considered as a 
generalization of Dekker’s algorithm. 
 
4.2 Non-circularity Property 
 
The property of not assuming atomicity on read and write operations has been referred in the 
literature as non-circularity property. The mutual exclusion algorithms with non-circularity 
property are called non-atomic algorithms. It was widely believed that the read and write operations 
on an individual memory word are atomic (mutually exclusive) is a required assumption for any 
mutual exclusion algorithm of shared memory systems. This belief was observed as incorrect by 
Lamport in [10], referring that Bakery algorithm does not require such assumption. Recently, in [1], 
bakery algorithm has been credited as the first non-atomic algorithm to assure mutual exclusion. 
However, it is interesting to know that Dekker’s algorithm and the algorithm by Knuth, proposed 
more than eight years before Bakery algorithm was published, are indeed non-atomic algorithms 
assuring safety and liveness properties. 
 
Consider Dekker’s algorithm. In that, a process writes its status value, to indicate its competition 
for the CS, before reading the status value of the other process. Since the operations within a 
process are sequential, at least one write should precede both reads. That means, at least one 
process can observe the status value of other process correctly, and therefore it cannot come out of 
the while-loop. Thus, mutual exclusion will be preserved always in Dekker’s algorithm irrespective 
of whether the operations are atomic or not. The similar argument is valid for Knuth’s algorithm.  
 
Theorem 4.2.1 Atomicity assumption is not required to assure the safety property of the algorithms 
by Dekker and Knuth. 
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4.3 Bound on Bypass 
 
When several processes are competing for a shared resource, some later processes may overtake or 
bypass other earlier processes. This may happen due to different execution speeds of the processes. 
The bound on the number of bypass over a process in an algorithm indicates the fairness assurance 
of that algorithm. Peterson has never claimed that his algorithm assures bounded bypass. But, 
independently, the bound of Peterson’s algorithms has been computed by different researchers as 
follows: Raynal[14] computed the bound as n(n-1)/2; Kowaltowski and Palma[8] claimed it as n-1; 
and Hofri[6] derived it as n-1.  
 
Consider the following scenario. The processes p1, p2, and p3 are currently competing for the CS.  
 

• Process p1 starts first, sets Q[p1] := 1, 
• p3 starts and sets TURN[1] := p3, 
• p2 sets TURN[1] := p2 and so p3 is pushed, 
• since the condition (∀ k ≠ p2, Q[k] < 1) or (TURN[1] ≠ p2) is not true, p2 is blocked at 

stage 1, 
• p3 crosses stage 1 to stage 2, 
• since the condition (∀ k ≠ p3, Q[k] < j) is true, for j ≥ 2, it keeps proceeding further, 

enters the CS, and completes its CS execution, 
• p3 starts competing again for the CS, and sets TURN[1] := p3, 
• the condition (TURN[1]  ≠ p2) becomes true, that is, p2 is unblocked and p3 is blocked 

at stage 1, 
• p2 moves up all the way, enters and leaves the CS, starts competing again, and sets 

TURN[1] := p2, 
• this time p2 gets blocked and p3 is unblocked, at stage 1, and  
• p2 and p3 can overtake p1, alternately, several times until p1 sets TURN[1] := p1. 

 
Therefore, there is no bound on the number of possible bypasses in Peterson’s algorithm. 

 
5. Conclusion 
 
Concurrent programs are extremely hard to design and notorious for subtle errors. Slips are often 
possible while characterizing, designing, and proving the properties of concurrent programs.  In this 
context, precise understanding of the concepts and ideas are extremely important and any 
misleading interpretations or references about popular algorithms will only add further complexity 
to the subject matter.  
 
As a result of these observations, we feel that, (i) any error or inaccuracy observed should be 
disseminated to the scientific community as soon as they are identified. This may increase the 
clarity of the subject matter and avoid cascading or perpetual errors in concurrent programs; (ii) a 
systematic approach (structured software engineering techniques and tools) to design concurrent 
programs would help to alleviate the intricacy involved in it, and (iii) more importantly, it is 
essential to understand and accept that a different mindset[15] is required to design concurrent 
programs. 
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