

Solving Divide and Conquer Recurrences

By Master Theorem á la Charlie
Charlie Obimbo

Dept. of Computing and Information Science
University of Guelph

ABSTRACT
This paper discusses analysis of recursive problems. It delves first on
their classification, and then the various methods of solving them,
depending on which class the recursive relation belongs to. An
improvement on the Master Method is then described and used to
demonstrate how this method is used to solve recursive relations on
Divide & Conquer problems.

The revised method is found easier to understand and remember when
solving recurrences.

Keywords: Algorithms, Complexity, Recurrences, Divide and Conquer, Master
Theorem

1. Introduction
Problems that require the solving of recurrence relations occur frequently in
Algorithm: Analysis and Design Courses. Some of the algorithms frequently
taught in these courses are:

 1. Merge Sort T(n) = 2T(n/2) + 2(n)

2. Towers of Hanoi

 3. Euclid's Algorithm

4. Binary Search

6. Strassen’s Method

7. Large Integer Multiplication

5. Quick Sort
1

T(n) = 2T(n-1) + 2(1) [2]

T(n) ≤ T(n/2) + 2(1) [2]

T(n) = T(n/2) + 2(1) [2]

T(n) = 7T(n/2) + 2(n2) [3]

T(n) = 4T(n/2) + cn; T(1) =0 [3]

∑
−

=

+≤
1

0
)(2)(

n

k
kT

n
dnnT

 2

to name but a few.

 The indispensable last step when analyzing many algorithms is often to
solve a recurrence equation. To effectively teach algorithm analysis, it is
therefore essential to teach the students:

1. how to effectively classify the specific type of recurrence. This is dealt
with in section 2.2 of this paper.

2. how to use the different methods to solve these problems (in particular,
which methods are appropriate for which problems).

2. Recurrence Relations

2.1 Solving Recurrence Relations
There are a number of methods that we frequently use to solve recurrence
relations. These are well defined and discussed in popular algorithm analysis
texts [1, 2, 3, 4] and even in the Discrete Mathematics text books [5, 6].

 Some of the methods discussed in these texts are:

 The iterative method (also known as Recursion Tree [1]) which entails
expanding the recursive terms on the RHS of a recursive formula by the
recursive formula.

 Example: T(n) = 3T(n-1) + 2

 becomes T(n) = 3[3T(n-2) + 2] + 2 = 9T(n-2) + 8 = …

 The Intelligent Guess Method

 The Master Method

 The Method of Characteristic Equations

 3

2.2 Classification of Recurrence Relations
In most algorithm analysis and design courses taught at undergraduate level,
there are three prevalent types of recurrences. There are other types of
interesting occurrences, but they may not be relevant to introduce in a short
course, since their application would be rare. The essence is to give the
students the tools, that they can master, apply and build on as is necessary.
For the latter part, there is literature to help.

The three types of recurrences mainly dealt with are:

(a) Recurrences for Divide and conquer algorithms

(b) Homogeneous-linear recurrences with constant coefficients

(c) Homogeneous non-linear recurrences

We will briefly describe these three classes.

2.2.1 Divide & Conquer Algorithms

In a Divide & Conquer some of the typical algorithms covered of this category
are:

 Strassen’s Matrix Multiplication Algorithm

 where a is the threshold.

 Binary Search

 Merge Sort

In general, consider an algorithm that divides a problem into a subproblems,
each of size 1/b of the original problem, and the algorithm used to combine





>+
=

=
annnT
anc

nT
)()2/(7

)(2θ





>+
=

=
1)1()2/(
1 1

)(
nnT
n

nT
θ





>+
=

=
1)()2/(2
1 1

)(
nnnT
n

nT
θ

 4

the solutions of the subproblems takes f(n) time. The running time of the
algorithm can be expressed as:

 (2.1)

2.2.2 Homogeneous Linear Recurrences

This category of algorithms take the form:

 (2.2)

For an example, consider the following algorithm, which determines the nth
fibonacci number recursively:

 function Fibrec(n)
 if n > 2 then return n
 else return Fibrec(n-1) + Fibrec(n-2)

It’s recursive relation can be expressed as:

Another example would be the Towers of Hanoi [2]:

 procedure Hanoi(m, i, j)
 /* Moves the m smallest rings from rod i to rod j */
 if m > 0 then

Hanoi(m-1, i, 6-i-j)
 write i “ → ” j
 Hanoi(m-1, 6-i-j, j)

With the recurrence relation:

() () ()



>−++−+−
=

=
0221

00

 if221
 if)(

)(
nnnTanTanTa
nnnT

nT
L







>+







=
= 1 if)(

1 if
)(nnf

b
naT

nd
nT

() ()



>−+−
==

=
 1 if21

1or 0 if
)(

nnTnT
nna

nT

 5

The major thing to note in these types of recurrence relations is that, when
rewritten, the recurrences have the form:

- these are called linear homogeneous equations with constant
coefficients.

o they are called linear because they do not contain terms of

the form tn-jtn-i or of the form t2
n-j

o homogeneous because their sum = 0, and

o with constant coefficients because the ai’s are constants.

The solution to a homogeneous recurrence is obtained by using the
characteristic equation. This method is well discussed in [2].

2.2.3 Homogeneous non-linear recurrences

The solution to homogeneous recurrences becomes more difficult when the
recurrence is non-linear. An example of this is seen in the analysis of the
exhaustive method of solving the parenthesization problem in the Matrix-Chain
Multiplication problem.

 This problem can be defined briefly as follows:

 Given a sequence (chain) of n matrices, 〈A1, A2, …, An〉 we wish to
compute the product:

A1A2… An

We can evaluate this expression using the standard algorithm for multiplying
matrices. However, since we know that matrix multiplication is associative,
and that multiplying two matrices A and B of dimensions (m×n) and (n×l)
requires m × n × l multiplications, then the order in which we multiply the
matrices matters. This can be seen if we require to multiply the following four

()



+−
=

=
 otherwise112

0 if
)(

mT
ma

mT

0110 =+++ −− knknn tatata L

 6

matrices: A1 (4, 500), A2 (500, 20), A3 (20, 3000), and A4 (3000, 2). The
differences in the number of multiplications required, depending on the order
of multiplying the matrices (parenthesization) is given below:

 (A1 A2) (A3 A4)

 (A1 A2) = A12 4 × 500 × 20 = 40 000

 (A3 A4) = A34 20 × 3000 × 2 = 120 000

 A12A34 4 × 20 × 2 = 160

 160 160

 (A1 (A2 A3)) A4

 (A2 A3) = A23 500 × 20 × 3000 = 30 000 000

 (A1 A23) = A13 4 × 500 × 3000 = 6 000 000

 A13A4 4 × 3000 × 2 = 24 000

 36 024 000

As can be seen, the first parenthesization is preferable, as it take only 160
thousand multiplications whereas the second 36 million.

An exhaustive algorithm that checks all possible parenthesizations possible, and
then chooses the minimum would have a recurrence of:







>−
=

= ∑
−

=
1 if)()(
1 if 1

)(
1

kknPkP
k

nP kn

k

 7

This forms a homogeneous non-linear recurrence relation, the solution of which
is similar to the Catalan numbers.

A simpler analysis gives a loose lower bound of 2n and can easily be solved by
induction.

3. The Master Method

 The standard method of solving the Divide & Conquer type of
recurrences, (equation 2.1 in section 2.2.1):

 (3.1)

is by using the Master Method (or Master Theorem). This is normally expressed
in the following form:

This formula is rather complex and difficult to remember. In the next section
we state it in a simplified manner. This has been used in the CIS 3490
(Algorithm: Analysis and Design) course taught at the University of Guelph,
and there has been a significant difference in the performance of the Students
who have used it to solve divide and conquer recurrences, using this method.







>+







=
= 1 if)(

1 if
)(nnf

b
naT

nd
nT

()

()

()

()

()

()

















<
>

















<
Ω=

Θ=

=

Θ

Θ

Θ

=

+

−

1
0

largefor)()/(
 AND)(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf
nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b

ε

ε

ε

 8

4. The Master Method á la Charlie

 The standard method of solving the Divide & Conquer type of
recurrences, (equation 1 in section 2.2.1):

Let

Note that most functions f(n) in such relationships (in the Divide & Conquer
algorithms) are bound by polynomials i.e. f(n) = θ(nk). Let us, in fact, rewrite
this equation as:

 (4.1)

Thus in equation (4.1) above, let c = logb a; then

If f(n) is not bound by a polynomial, then T(n) = θ(f(n)).

Example 4.1
Find the asymptotic behaviour of the Strassen’s algorithm, which has the
following recurrence relation:

 As we can see, here a = 7, b = 2, k = 2.

Thus c = log27. Now since log27 > 2; i.e. c > k, then







>+







=
= 1 if)(

1 if
)(nnf

b
naT

nd
nT

()
()
()
()








>
=
<

=
kcn
kcnn
kcn

nT
c

k

k

if
iflog
if

θ
θ
θ







>+







=
= thresholdnhnnT

thresholdnd
nT if

2
7

 if
)(2

)()()(T(n) 81.27log2 nnnc θθθ ===

()






>+







=
= 1 if

1 if
)(nn

b
naT

nd
nT kθ

 9

Example 4.2

Find the asymptotic behaviour of the following recurrence relation:

 As we can see, here a = 5, b = 3, k = 2.

Thus c = log35. Now since log35 < 2; i.e. c < k, then T(n) = θ(n2).

5. Conclusions

The method was taught to students taking the Algorithms: Analysis and Design
Course at University of Guelph. There was a very positive response as well as a
considerable demonstration of understanding of the recursion material, as
compared to the previous year, when the method used was mainly the Master
Method as described in Section 3. The students taught the new method, were
taught both ways, and a vast majority preferred the new method. They also did
significantly better on the questions on recursion.

Here is a sample of the responses I received:

Hi Charlie,

The course was interesting but difficult. But thanks for all the help. Your
office hours were really helpful. I liked the Master Theorem a la Charlie.
It's very neat and makes it easier in finding the complexities.

Have a good summer.

-A [anonymity for the sake of the Student.]





>+
=

=
1if)3/(5
1if 1

)(2 nnnT
n

nT

 10

6. References

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms,
2nd Edition. MIT Press (McGraw Hill), 2001.

2. G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice Hall,
1996.

3. R. Neapolitan and K. Naimipour. Foundations of Algorithms: with C++
pseudocode, 2nd Edition. Jones and Bartlett Publishers, 1998.

4. U. Manber. Introduction to Algorithms: A Creative Approach. Addison
Wesley, 1989.

5. K. Rosen. Discrete Mathematics And Its Applications, 5th Edition.
McGraw Hill, 2003.

6. S. Epp. Discrete Mathematics With Applications, 2nd Edition.
Brooks/Cole Publishers Company, 1995.

Author
Charlie F. Obimbo

Dept. of Computing and Information Science

University of Guelph

Guelph, ON N1G 2W1

cobimbo@cis.uoguelph.ca

http://www.cis.uoguelph.ca/~cobimbo

mailto:cobimbo@cis.uoguelph.ca
http://www.cis.uoguelph.ca/~cobimbo

	Solving Divide and Conquer Recurrences By Master Theorem á la Charlie
	
	ABSTRACT

	Introduction
	Recurrence Relations
	2.1 Solving Recurrence Relations
	2.2 Classification of Recurrence Relations
	2.2.1 Divide & Conquer Algorithms
	2.2.2 Homogeneous Linear Recurrences
	2.2.3 Homogeneous non-linear recurrences
	(A3 A4) = A34 	20 (3000 (2	= 120 000
	A12A34 	4 (20 (2		= 160

	160 160
	(A1 A23) = A13 4 (500 (3000 = 6 000 000
	A13A4	 	 4 (3000 (2 	 = 24 000

	36 024 000
	As can be seen, the first parenthesization is preferable, as it take only 160 thousand multiplications whereas the second 36 million.
	An exhaustive algorithm that checks all possible parenthesizations possible, and then chooses the minimum would have a recurrence of:
	This forms a homogeneous non-linear recurrence relation, the solution of which is similar to the Catalan numbers.

	The Master Method
	The Master Method á la Charlie
	Example 4.1
	Example 4.2

	Conclusions
	References
	Author

