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ABSTRACT 
This paper discusses analysis of recursive problems.  It delves first on 
their classification, and then the various methods of solving them, 
depending on which class the recursive relation belongs to.  An 
improvement on the Master Method is then described and used to 
demonstrate how this method is used to solve recursive relations on 
Divide & Conquer problems.  

The revised method is found easier to understand and remember when 
solving recurrences. 
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1. Introduction 
Problems that require the solving of recurrence relations occur frequently in 
Algorithm: Analysis and Design Courses.  Some of the algorithms frequently 
taught in these courses are: 

 1.  Merge Sort   T(n) =  2T(n/2) +  2(n) 
 

2. Towers of Hanoi    
     

 3.  Euclid's Algorithm     
 

4.  Binary Search    

 

6.  Strassen’s Method   
 

7.  Large Integer Multiplication 

 

5.   Quick Sort 
1

T(n) =  2T(n-1) +  2(1)  [2] 

T(n) ≤ T(n/2) + 2(1)   [2] 

T(n) = T(n/2) +  2(1)  [2] 

T(n) =  7T(n/2) +  2(n2)  [3] 

T(n) =  4T(n/2) +  cn; T(1) =0 [3] 
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to name but a few. 

 

 The indispensable last step when analyzing many algorithms is often to 
solve a recurrence equation.  To effectively teach algorithm analysis, it is 
therefore essential to teach the students: 

1. how to effectively classify the specific type of recurrence.  This is dealt 
with in section 2.2 of this paper. 

2. how to use the  different methods to solve these problems (in particular, 
which methods are appropriate for which problems). 

 

 

2. Recurrence Relations  

2.1 Solving Recurrence Relations 
There are a number of methods that we frequently use to solve recurrence 
relations.  These are well defined and discussed in popular algorithm analysis 
texts [1, 2, 3, 4] and even in the Discrete Mathematics text books [5, 6]. 

 

  Some of the methods discussed in these texts are: 

 

 The iterative method (also known as Recursion Tree [1]) which entails 
expanding the recursive terms on the RHS of a recursive formula by the 
recursive formula. 

 

 Example:  T(n) = 3T(n-1) + 2 

 becomes   T(n) = 3[3T(n-2) + 2] + 2 = 9T(n-2) + 8 = … 

 

 The Intelligent Guess Method 

 

 The Master Method  

 

 The Method of Characteristic Equations 
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2.2 Classification of Recurrence Relations 
In most algorithm analysis and design courses taught at undergraduate level, 
there are three prevalent types of recurrences.  There are other types of 
interesting occurrences, but they may not be relevant to introduce in a short 
course, since their application would be rare.  The essence is to give the 
students the tools, that they can master, apply and build on as is necessary. 
For the latter part, there is literature to help. 

 

The three types of recurrences mainly dealt with are: 

(a) Recurrences for Divide and conquer algorithms 

(b) Homogeneous-linear recurrences with constant coefficients 

(c) Homogeneous non-linear recurrences 

 

We will briefly describe these three classes. 

 

2.2.1 Divide & Conquer Algorithms 
 

In a Divide & Conquer some of the typical algorithms covered of this category 
are: 

 Strassen’s Matrix Multiplication Algorithm 

 

 where a is the threshold. 

 

 Binary Search 

   
 Merge Sort   

 
In general, consider an algorithm that divides a problem into a subproblems, 
each of size 1/b of the original problem, and the algorithm used to combine 
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the solutions of the subproblems takes f(n) time.  The running time of the 
algorithm can be expressed as: 
 
 
 
          (2.1) 
 
 
 

2.2.2 Homogeneous Linear Recurrences 
 

This category of algorithms take the form: 

 
 

                (2.2) 
 
 
 
For an example, consider the following algorithm, which determines the nth 
fibonacci number recursively: 
 
 function  Fibrec(n) 
     if n > 2  then return n 
     else return Fibrec(n-1) + Fibrec(n-2) 
 
 
It’s recursive relation can be expressed as: 
 
    
 
 
 
Another example would be the Towers of Hanoi [2]: 
 
 procedure  Hanoi(m, i, j) 
      /* Moves the m smallest rings from rod i to rod j  */ 
     if m > 0  then  

Hanoi(m-1, i, 6-i-j) 
      write i  “ → ” j  
  Hanoi(m-1, 6-i-j, j) 

 
With the recurrence relation: 
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The major thing to note in these types of recurrence relations is that, when 
rewritten, the recurrences have the form: 
 

  
 

- these are called linear homogeneous equations with constant 
coefficients. 

 
o they are called linear because they do not contain terms of 

the form  tn-jtn-i or of the form t2
n-j 

 
o homogeneous because their sum = 0, and 

 
o with constant coefficients because the ai’s are constants. 

 
 
The solution to a homogeneous recurrence is obtained by using the 
characteristic equation.  This method is well discussed in [2]. 
 
 

2.2.3 Homogeneous non-linear recurrences 
 

The solution to homogeneous recurrences becomes more difficult when the 
recurrence is non-linear.  An example of this is seen in the analysis of the 
exhaustive method of solving the parenthesization problem in the Matrix-Chain 
Multiplication problem. 

 

 This problem can be defined briefly as follows: 

 

 Given a sequence (chain) of n matrices, 〈A1, A2, …, An〉 we wish to 
compute the product: 

A1A2… An    

We can evaluate this expression using the standard algorithm for multiplying 
matrices.  However, since we know that matrix multiplication is associative, 
and that multiplying two matrices A and B of dimensions (m×n) and (n×l) 
requires m × n × l multiplications, then the order in which we multiply the 
matrices matters.  This can be seen if we require to multiply the following four 
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matrices:  A1 (4, 500), A2 (500, 20), A3 (20, 3000), and A4 (3000, 2). The 
differences in the number of multiplications required, depending on the order 
of multiplying the matrices (parenthesization) is given below: 

 

 (A1  A2) (A3  A4)  

 (A1  A2) = A12  4 × 500 × 20  =   40 000 

   (A3  A4) = A34  20 × 3000 × 2 = 120 000 

 A12A34  4 × 20 × 2  =        160 

         _________ 

            160 160 
 

 (A1  (A2 A3) ) A4  

 (A2  A3) = A23      500 ×   20  × 3000  =   30 000 000 

   (A1 A23) = A13         4 × 500  × 3000  =     6 000 000 

 A13A4     4 × 3000 × 2     =          24 000 

         ____________ 

             36 024 000 

As can be seen, the first parenthesization is preferable, as it take only 160 
thousand multiplications whereas the second 36 million.  

An exhaustive algorithm that checks all possible parenthesizations possible, and 
then chooses the minimum would have a recurrence of: 
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This forms a homogeneous non-linear recurrence relation, the solution of which 
is similar to the Catalan numbers. 
 
A simpler analysis gives a loose lower bound of 2n and can easily be solved by 
induction. 
 
 

3. The Master Method 
 
 The standard method of solving the Divide & Conquer type of 
recurrences, (equation 2.1 in section 2.2.1): 
 

   
   

      (3.1) 
 
 
is by using the Master Method (or Master Theorem).  This is normally expressed 
in the following form: 
 

 
 
This formula is rather complex and difficult to remember.  In the next section 
we state it in a simplified manner.  This has been used in the CIS 3490 
(Algorithm: Analysis and Design) course taught at the University of Guelph, 
and there has been a significant difference in the performance of the Students 
who have used it to solve divide and conquer recurrences, using this method. 
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4. The Master Method á la Charlie 
 
 The standard method of solving the Divide & Conquer type of 
recurrences, (equation 1 in section 2.2.1): 
 
 
Let   
 
 
 
Note that most functions f(n) in such relationships (in the Divide & Conquer 
algorithms) are bound by polynomials i.e.  f(n) = θ(nk).  Let us, in fact, rewrite 
this equation as: 
 
 
     (4.1) 
 
 
 
Thus in equation (4.1) above, let c = logb a; then 
 

 
 
If f(n) is not bound by a polynomial, then T(n) = θ(f(n)). 
 

Example 4.1 
Find the asymptotic behaviour of the Strassen’s algorithm, which has the 
following recurrence relation: 

 

 

 

  

 As we can see, here a = 7, b = 2, k = 2.   

Thus c = log27.  Now since log27 > 2; i.e. c > k,  then  
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Example 4.2 
 
Find the asymptotic behaviour of the following recurrence relation: 
 
 

 

 

  

 As we can see, here a = 5, b = 3, k = 2.   

Thus c = log35.  Now since log35 < 2; i.e. c < k,  then  T(n) = θ(n2). 

 

5. Conclusions 
 

The method was taught to students taking the Algorithms: Analysis and Design 
Course at University of Guelph.  There was a very positive response as well as a 
considerable demonstration of understanding of the recursion material, as 
compared to the previous year, when the method used was mainly the Master 
Method as described in Section 3.  The students taught the new method, were 
taught both ways, and a vast majority preferred the new method. They also did 
significantly better on the questions on recursion.  

 

Here is a sample of the responses I received: 

 

Hi Charlie, 

 

The course was interesting but difficult. But thanks for all the help. Your 
office hours were really helpful. I liked the Master Theorem a la Charlie. 
It's very neat and makes it easier in finding the complexities. 

Have a good summer. 

-A [anonymity for the sake of the Student.] 
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