
Multi-agent actions under

uncertainty: situation calculus,

discrete time, plans and policies

David Poole

University of British Columbia

1



The problem and Solution

Problem: determine what an agent should do based on

background knowledge, preferences and what it observes.

Basis for preferences and uncertainty: Bayesian decision

theory.Alternatives:goals, satisficing.

Problem representation: independent choice logic.

Alternatives:Bayesian networks, MDPs, FOPC, …

Action representation: situation calculus.

Alternatives:discrete or continuous time.

Agent function represented as conditional plan.

Alternative:policies.

2



Logic and Uncertainty

Choice:

• Rich logic including all of first-order predicate logic

(e.g., Bacchus) — use both probability and disjunction to

represent uncertainty.

• Weaker logic where all uncertainty is handled by

Bayesian decision theory. The underlying logic contains

no uncertainty — uncertainty is in terms of probabilities,

decisions and utilities.

3



Independent Choice Logic

independent choices + acyclic logic program to give

consequence of choices.

extension of pure Prolog with negation as failure; rules have

their normal logical meaning.

all numbers can be consistently interpreted as probabilities.

extension of Bayesian networks: same notion of ‘causation’;

can express structured probability tables, logical variables.

independent hypotheses: if there is a dependence we invent a

new hypothesis to explain the dependence.

4



Independent choice logic

An independent choice logic theoryis built from:

C0 ‘nature’s choice space’ is a set of alternatives.

An alternative is a set of atomic choices.

An atomic choiceis a ground atomic formula.

F thefacts is an acyclic logic program such that no atomic

choice unifies with the head of any rule. Can include

negation as failure.

5



Semantics

A total choice is a set containing exactly one element of each

alternative inC0.

For each total choiceτ there is a possible worldwτ .

Formulaf is true inwτ (writtenwτ |= f ) if f is true in the

(unique) stable model ofF ∪ τ .

6



Independent choice logic

An independent choice logic theorycan also contain:

A called theaction space, is a set of primitive actions that

the agent can perform.

O theobservablesis a set of terms.

P0 is a function∪C0→ [0, 1] .
Probability distribution over alternatives:

∀χ ∈ C0,
∑

α∈χ P0(α) = 1.

7



Temporal models in ICL
ICL is independent of any model of time. E.g.,

• Time implicit: action chosen depends on history:

do(A)← do_choice(A, C) ∧ history(C)

∀C {do_choice(A, C) : A possible action} ∈ Cα

• Explicit time: discrete Markovian

do(A, T)← do_choice(A, S) ∧ state(S, T)

state(S′, T + 1)← state_trans(S, S′) ∧ state(S, T)

∀S {do_choice(A, S) : A possible action} ∈ Cα

∀S {state_trans(S, S′) : S′ state} ∈ C0

• Situation-based time, actions specified in program.

8



Situation calculus and Uncertainty

s0 is a situation anddo(A, S) is a situation ifA is an action

andS is a situation.

Deterministic case: the trajectory of actions by the (single)

agent determines what is true — situation=state.

With uncertainty, the trajectory of an agent’s actions does not

determine what is true.

Choice:

• keep the semantic conception of situation=state,

• or keep the syntactic form, so situation6=state, but situations

have simple form.

9



In general there will be a probability distribution over states

for a situation.

The agent’s actions are treated very differently from

exogenous actions.

10



Situation Calculus in ICL

A possible world is temporally extended — specifies a truth

value for every fluent in every situation.

Use standard situation calculus rules to specify what is true

after an action — body of rules can include atomic choices.

Robot programs select situations in possible worlds.

Programs can be contingent on observations: the robot will

observe different things in different possible worlds.

Actions have no preconditions — they can always be

attempted.

11



Situation Calculus in ICL: Example

carrying(key, do(pickup(key), S))←
at(robot, Pos, S) ∧
at(key, Pos, S) ∧
pickup_succeeds(S).

carrying(key, do(A, S))←
carrying(key, S) ∧
A 6= putdown(key) ∧
A 6= pickup(key) ∧
keeps_carrying(key, S).

12



Alternatives

∀S {pickup_succeeds(S), pickup_fails(S)} ∈ C0

P0(pickup_succeeds(S)) is the probability the robot is

carrying the key after thepickup(key) action when it was at

the same position as the key, and wasn’t carrying the key.

∀S {keeps_carrying(key, S), drops(key, S)} ∈ C0

13



Utility Axioms
Utility complete if ∀wτ∀S, exists uniqueU such that

wτ |= utility(U, S)

utility(R+ P, S)←
prize(P, S) ∧
resources(R, S).

prize(−1000, S)← crashed(S).

prize(1000, S)← in_lab(S)∧ ∼ crashed(S).

prize(0, S)←∼ in_lab(S)∧ ∼ crashed(S).

14



resources(200, s0).

resources(R− Cost, do(goto(To, Route), S))←
at(robot, From, S) ∧
pathcost(From, To, Route, Cost) ∧
resources(R, S).

resources(R− 10, do(A, S))←
∼gotoaction(A) ∧
resources(R, S).

gotoaction(goto(A, S)).

15



Imperfect Sensors
A sensor is symptomatic of what is true in the world.

sense(at_key, S)←
at(robot, P, S) ∧
at(key, P, S) ∧
sensor_true_pos(S).

sense(at_key, S)←
at(robot, P1, S) ∧
at(key, P2, S) ∧
P1 6= P2 ∧
sensor_false_pos(S).

16



Conditional Plans

A conditional plan can use sequential composition and

conditionals.

Plans select situations in worlds. The plan:

a; if c thenb elsed; eendIf; g
selects situationdo(g, do(b, do(a, s0))) in wτ

if sense(c, do(a, s0)) is true inwτ

selects situationdo(g, do(e, do(d, do(a, s0)))) in wτ

if sense(c, do(a, s0)) is false inwτ .

17



Plans select situations in worlds

We can recursively definedo(P, W, S1, S2) which is true if

doing planP in world W takes us from situationS1 to S2.

. . . in pseudo Prolog:

do(skip, W, S, S).

do(A, W, S, do(A, S))←
primitive(A).

do((P;Q), W, S1, S3)←
do(P, W, S1, S2) ∧
do(Q, W, S2, S3).

18



do((if C thenP elseQ endIf), W, S1, S2)←
W |= sense(C, S1) ∧
do(P, W, S1, S2).

do((if C thenP elseQ endIf), W, S1, S2)←
W 6|= sense(C, S1) ∧
do(Q, W, S1, S2).

19



Expected Utility of Plans

Theexpected utility of planP is

ε(P) =
∑

τ

p(wτ )× u(wτ , P)

whereu(W, P) is the utility of plan P in worldW:

u(W, P) = U if W |= utility(U, S)

wheredo(P, W, s0, S)

p(wτ ) is the probability of worldwτ :

p(wτ ) =
∏

χ0∈τ
P0(χ0)

20



Other Work
Exponentially more compact than probabilistic STRIPS:

E.g., each predicatepi persists stochastically and

independently through a wait:

pi(do(wait, S))← persists_pi(S) ∧ pi(S) ∈ F for eachpi

{persists_pi(S), stops_pi} ∈ C0 for eachpi

Similar to action networks [Boutilier et al. 95] but doesn’t

need #actions× #predicatesspace — this the frame problem!

Plans correspond to policy trees of finite stage POMDPs

[Kaelbling et al. 96].

Conditional plans are like Levesque[AAAI-96]’s robot plans.

21



Policies

Can axiomatize change using temporal model

(e.g., event calculus).

Reactive Policy:

do(pickup(key), T)←
sense(at_key, T) ∧
recall(want_key, T).

22



Conclusion

• Combine situation calculus and Bayesian decision theory.

• Allow conditional plans and noisy sensors and effectors.

• Notion of goal expanded to utilities.

• Plans or policies have expected values.

• Planning: finding (approximately) optimal plan/policy.

• Paper explores muti-agents and reactive policies vs plans.

23


