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Overview

• Belief Networks

• Variable Elimination Algorithm

• Parent Contexts & Structured Representations

• Structure-preserving inference

• Conclusion
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Belief (Bayesian) Networks

P(x1, . . . , xn) =
n∏

i=1

P(xi|xi−1 . . . x1)

=
n∏

i=1

P(xi|πxi)

πxi are parents ofxi : set of variables such that the

predecessors are independent ofxi given its parents.

3



Variable Elimination Algorithm
Given: Bayesian Network,

Query variable,

Observations,

Elimination ordering on remaining variables

1. set observed variables

2. sum out variables according to elimination

ordering

3. renormalize
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Summing Out a Variable

c d e f g

a b

...

h

...

... ......

... ...

Sum oute:

P(a|c, d, e)

P(b|e, f , g)

P(e|h)


 P(a, b|c, d, f , g, h)
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Structured Probability Tables

P(a|c, d, e) P(b|e, f , g)

p2 = P(a= t|d = t ∧ e= f )

d
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t f

t f
p1 p2

t f
p3 p4

f

e g

p5 p6 p7 p8
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Eliminatinge, preserving structure

• We only need to considera & b together when

d = true∧ f = true.

In this contextc & g are irrelevant.

• In all other contexts we can considera & b

separately.

• Whend = false∧ f = false, e is irrelevant. In

this context the probabilities shouldn’t be

affected by eliminatinge.
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Contextual Independence
Given a set of variablesC, acontext onC is an

assignment of one value to each variable inC.

SupposeX, Y andC are disjoint sets of variables.

X andY arecontextually independent given

contextc ∈ val(C) if

P(X|Y=y1 ∧ C=c) = P(X|Y=y2 ∧ C=c)

for all y1, y2 ∈ val(Y) such thatP(y1 ∧ c) > 0 and

P(y2 ∧ c) > 0.
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Parent Contexts
A parent context for variablexi is a contextc for a subset

of the predecessors forxi such thatxi is contextually
independent of the other predecessors givenc.

For variablexi & assignmentxi−1=vi−1, . . . , x1=v1 of values

to its preceding variables, there is a parent contextπ
vi−1...v1
xi .

P(x1=v1, . . . , xn=vn)

=
n∏

i=1

P(xi=vn|xi−1=vi−1, . . . , x1=v1)

=
n∏

i=1

P(xi=vi |πvi−1...v1
xi )
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Idea behind probabilistic partial evaluation

• Maintain “rules” that are statements of

probabilities in contexts.

• When eliminating a variable, you can ignore all

rules that don’t involve that variable.

• This wins when a variable is only in few parent

contexts.

• Eliminating a variable looks like resolution!
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Rule-based representation of our example

a← d ∧ e : p1 b← f ∧ e : p5

a← d ∧ e : p2 b← f ∧ e : p6

a← d ∧ c : p3 b← f ∧ g : p7

a← b∧ c : p4 b← f ∧ g : p8

e← h : p9

e← h : p10
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Eliminatinge

a← d ∧ e : p1 b← f ∧ e : p5

a← d ∧ e : p2 b← f ∧ e : p6

a← d ∧ c : p3 b← f ∧ g : p7

a← b∧ c : p4 b← f ∧ g : p8

e← h : p9

e← h : p10

unaffected by eliminating e
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Variable partial evaluation
If we are eliminatinge, and have rules:

x← y∧ e : p1

x← y∧ e : p2

e← z : p3

• no other rules compatible withy containe in the body

• y & z are compatible contexts,

we create the rule:

x← y∧ z : p1p3+ p2(1− p3)
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Splitting Rules
A rule

a← b : p1

can besplit on variabled, forming rules:

a← b∧ d : p1

a← b∧ d : p1
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Why Split?
If there are different contexts fora giveneand for

a givene, you need to split the contexts to make

them directly comparable:

a← b∧ e : p1

〈
a← b∧ c∧ e : p1

a← b∧ c∧ e : p1

a← b∧ c∧ e : p2

a← b∧ c∧ e : p3
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Combining Heads
Rules

a← c : p1

b← c : p2

wherea andb refer to different variables, can be

combined producing:

a∧ b← c : p1p2

Thus in the context witha, b, andc all true, the

latter rule can be used instead of the first two.
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Splitting Compatible Bodies

a← d ∧ e : p1 b← f ∧ e : p5

a← d ∧ f ∧ e : p1 b← d ∧ f ∧ e : p5

a← d ∧ f ∧ e : p1 b← d ∧ f ∧ e : p5

a← d ∧ e : p2 b← f ∧ e : p6

a← d ∧ f ∧ e : p2 b← d ∧ f ∧ e : p6

a← d ∧ f ∧ e : p2 b← d ∧ f ∧ e : p6

e← h : p9

e← h : p10
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Combining Rules

a← d ∧ f ∧ e : p1 b← d ∧ f ∧ e : p5

a← d ∧ f ∧ e : p1 b← d ∧ f ∧ e : p5

a← d ∧ f ∧ e : p2 b← d ∧ f ∧ e : p6

a← d ∧ f ∧ e : p2 b← d ∧ f ∧ e : p6

e← h : p9

e← h : p10
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Result of eliminatinge
The resultant rules encode the probabilities of{a, b} in the

contexts:

d ∧ f ∧ h,

d ∧ f ∧ h

For all other contexts we considera andb separately.

The resulting number of rules is 24.

Tree structured probability forP(a, b|c, d, f , g, h, i) has 72

leaves. (Same as number of rules ifa andb are combined in

all contexts).

VE has a table of size 256.
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Evidence
We can set the values of all evidence variables before

summing out the remaining non-query variables.

Supposee1=o1 ∧ . . . ∧ es=os is observed:

• Remove any rule that containsei=o′i , whereoi 6= o′i in the

body.

• Remove any termei=oi in the body of a rule.

•Replace anyei=o′i , whereoi 6= o′i , in the head of a rulefalse.

• Replace anyei=oi in the head of a rule bytrue.

In rule heads, usetrue∧ a≡ a, andfalse∧ a≡ false.
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Conclusions

• New notion of parent contextH⇒ rule-based

representation for Bayesian networks.

• New algorithm for probabilistic inference that

preserves rule-structure.

• Exploits more structure than tree-based

representations of conditional probability.

• Allows for finer-grained approximation than in

a Bayesian network.
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