Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference

David Poole

University of British Columbia

Overview

- Belief Networks
- Variable Elimination Algorithm
- Parent Contexts \& Structured Representations
- Structure-preserving inference
- Conclusion

Belief (Bayesian) Networks

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} P\left(x_{i} \mid x_{i-1} \ldots x_{1}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{x_{i}}\right)
\end{aligned}
$$

$\pi_{x_{i}}$ are parents of x_{i} : set of variables such that the predecessors are independent of x_{i} given its parents.

Variable Elimination Algorithm

Given: Bayesian Network,
Query variable,
Observations,
Elimination ordering on remaining variables

1. set observed variables
2. sum out variables according to elimination ordering
3. renormalize

Summing Out a Variable

Sum out e :

$$
\left.\begin{array}{l}
P(a \mid c, d, e) \\
P(b \mid e, f, g) \\
P(e \mid h)
\end{array}\right\} P(a, b \mid c, d, f, g, h)
$$

Structured Probability Tables

$P(a \mid c, d, e)$
$P(b \mid e, f, g)$
$\overbrace{p_{1}}^{2}$

$$
p_{2}=P(a=t \mid d=t \wedge e=f)
$$

Eliminating e, preserving structure

- We only need to consider $a \& b$ together when $d=$ true $\wedge f=$ true . In this context $c \& g$ are irrelevant.
- In all other contexts we can consider $a \& b$ separately.
- When $d=$ false $\wedge f=$ false, e is irrelevant. In this context the probabilities shouldn't be affected by eliminating e.

Contextual Independence

Given a set of variables C, a context on C is an assignment of one value to each variable in C.

Suppose X, Y and C are disjoint sets of variables. X and Y are contextually independent given context $c \in \operatorname{val}(C)$ if

$$
P\left(X \mid Y=y_{1} \wedge C=c\right)=P\left(X \mid Y=y_{2} \wedge C=c\right)
$$

for all $y_{1}, y_{2} \in \operatorname{val}(Y)$ such that $P\left(y_{1} \wedge c\right)>0$ and $P\left(y_{2} \wedge c\right)>0$.

Parent Contexts

A parent context for variable x_{i} is a context c for a subset of the predecessors for x_{i} such that $\boldsymbol{x}_{\boldsymbol{i}}$ is contextually independent of the other predecessors given \boldsymbol{c}.

For variable $x_{i} \&$ assignment $x_{i-1}=v_{i-1}, \ldots, x_{1}=v_{1}$ of values to its preceding variables, there is a parent context $\pi_{x_{i}}^{v_{i-1} \ldots \nu_{1}}$.

$$
\begin{aligned}
& P\left(x_{1}=v_{1}, \ldots, x_{n}=v_{n}\right) \\
& \quad=\prod_{i=1}^{n} P\left(x_{i}=v_{n} \mid x_{i-1}=v_{i-1}, \ldots, x_{1}=v_{1}\right) \\
& \quad=\prod_{i=1}^{n} P\left(x_{i}=v_{i} \mid \pi_{x_{i}}^{v_{i-1} \ldots v_{1}}\right)
\end{aligned}
$$

Idea behind probabilistic partial evaluation

- Maintain "rules" that are statements of probabilities in contexts.
- When eliminating a variable, you can ignore all rules that don't involve that variable.
- This wins when a variable is only in few parent contexts.
- Eliminating a variable looks like resolution!

Rule-based representation of our example

$$
\begin{array}{lll}
a \leftarrow d \wedge e: p_{1} & & b \leftarrow f \wedge e: p_{5} \\
a \leftarrow d \wedge \bar{e}: p_{2} & & b \leftarrow f \wedge \bar{e}: p_{6} \\
a \leftarrow \bar{d} \wedge c: p_{3} & & b \leftarrow \bar{f} \wedge g: p_{7} \\
a \leftarrow \bar{b} \wedge \bar{c}: p_{4} & & b \leftarrow \bar{f} \wedge \bar{g}: p_{8} \\
& e \leftarrow h: p_{9} & \\
& e \leftarrow \bar{h}: p_{10} &
\end{array}
$$

Eliminating e

$$
\begin{aligned}
& a \leftarrow d \wedge e: p_{1} \\
& b \leftarrow f \wedge e: p_{5} \\
& \begin{array}{ll}
a \leftarrow d \wedge \bar{e}: p_{2} & b \leftarrow f \wedge \bar{e}: p_{6} \\
a \leftarrow \bar{d} \wedge c: p_{3} & b \leftarrow \bar{f} \wedge g: p_{7}
\end{array} \\
& b \leftarrow \bar{f} \wedge \bar{g}: p_{8} \\
& e \leftarrow h: p_{9} \\
& e \leftarrow \bar{h}: p_{10}
\end{aligned}
$$

unaffected by eliminating e

Variable partial evaluation

If we are eliminating e, and have rules:

$$
\begin{aligned}
& x \leftarrow y \wedge e: p_{1} \\
& x \leftarrow y \wedge \bar{e}: p_{2} \\
& e \leftarrow z: p_{3}
\end{aligned}
$$

- no other rules compatible with y contain e in the body
- $y \& z$ are compatible contexts,
we create the rule:

$$
x \leftarrow y \wedge z: p_{1} p_{3}+p_{2}\left(1-p_{3}\right)
$$

Splitting Rules

A rule

$$
a \leftarrow b: p_{1}
$$

can be split on variable d, forming rules:

$$
\begin{aligned}
& a \leftarrow b \wedge d: p_{1} \\
& a \leftarrow b \wedge \bar{d}: p_{1}
\end{aligned}
$$

Why Split?

If there are different contexts for a given e and for a given \bar{e}, you need to split the contexts to make them directly comparable:

$$
\begin{array}{ll}
a \leftarrow b \wedge e: p_{1} \\
a \leftarrow b \wedge c \wedge \bar{e}: p_{2} \\
a \leftarrow b \wedge \bar{c} \wedge \bar{e}: p_{3}
\end{array} \quad \begin{aligned}
& a \leftarrow b \wedge c \wedge e: p_{1} \\
& a \leftarrow b \wedge \bar{c} \wedge e: p_{1}
\end{aligned}
$$

Combining Heads

Rules

$$
\begin{aligned}
& a \leftarrow c: p_{1} \\
& b \leftarrow c: p_{2}
\end{aligned}
$$

where a and b refer to different variables, can be combined producing:

$$
a \wedge b \leftarrow c: p_{1} p_{2}
$$

Thus in the context with a, b, and c all true, the latter rule can be used instead of the first two.

Splitting Compatible Bodies

$$
\begin{aligned}
& \overline{a \leftarrow d \wedge: p_{1}} \\
& a \leftarrow d \wedge f \wedge e: p_{1} \\
& a \leftarrow d \wedge \bar{f} \wedge e: p_{1} \\
& a \leftarrow d \wedge \bar{e}: p_{2} \\
& a \leftarrow d \wedge f \wedge \bar{e}: p_{2} \\
& a \leftarrow d \wedge \bar{f} \wedge \bar{e}: p_{2}
\end{aligned}
$$

$\bar{b} \leftarrow f \wedge e: p_{5}$
$b \leftarrow d \wedge f \wedge e: p_{5}$
$b \leftarrow \bar{d} \wedge f \wedge e: p_{5}$
$\bar{b} \leftarrow \wedge \bar{e}: p_{6}$
$b \leftarrow d \wedge f \wedge \bar{e}: p_{6}$
$b \leftarrow \bar{d} \wedge f \wedge \bar{e}: p_{6}$

Combining Rules

$$
\begin{aligned}
& a \leftarrow d \wedge f \wedge e: p_{1} \longleftrightarrow b \leftarrow d \wedge f \wedge e: p_{5} \\
& a \leftarrow d \wedge \bar{f} \wedge e: p_{1} \longrightarrow b \leftarrow \bar{d} \wedge f \wedge e: p_{5} \\
& a \leftarrow d \wedge f \wedge \bar{e}: p_{2} \rightleftarrows b \leftarrow d \underline{d} \wedge f \wedge \bar{e}: p_{6} \\
& a \leftarrow d \wedge \bar{f} \wedge \bar{e}: p_{2} \quad \longrightarrow b \leftarrow \bar{d} \wedge f \wedge \bar{e}: p_{6} \\
& e \leftarrow h: p_{9} \\
& e \leftarrow \bar{h}: p_{10}
\end{aligned}
$$

Result of eliminating e

The resultant rules encode the probabilities of $\{a, b\}$ in the contexts:
$d \wedge f \wedge h$,
$d \wedge f \wedge \bar{h}$
For all other contexts we consider a and b separately.
The resulting number of rules is 24 .
Tree structured probability for $P(a, b \mid c, d, f, g, h, i)$ has 72 leaves. (Same as number of rules if a and b are combined in all contexts).

VE has a table of size 256.

Evidence

We can set the values of all evidence variables before summing out the remaining non-query variables.
Suppose $e_{1}=o_{1} \wedge \ldots \wedge e_{s}=o_{s}$ is observed:

- Remove any rule that contains $e_{i}=o_{i}^{\prime}$, where $o_{i} \neq o_{i}^{\prime}$ in the body.
- Remove any term $e_{i}=o_{i}$ in the body of a rule.
- Replace any $e_{i}=o_{i}^{\prime}$, where $o_{i} \neq o_{i}^{\prime}$, in the head of a rule false.
- Replace any $e_{i}=o_{i}$ in the head of a rule by true.

In rule heads, use true $\wedge a \equiv a$, and false $\wedge a \equiv$ false.

Conclusions

- New notion of parent context \Longrightarrow rule-based representation for Bayesian networks.
- New algorithm for probabilistic inference that preserves rule-structure.
- Exploits more structure than tree-based representations of conditional probability.
- Allows for finer-grained approximation than in a Bayesian network.

