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Abstract

We present an anytime algorithm which com-
putes policies for decision problems represented
as multi-stage influence diagrams. Our ago-
rithm constructs policies incrementally, starting
from a policy which makes no use of the avail-
able information. The incrementa process con-
structs policies which includes more of theinfor-
meation available to the decision maker at each
step. While the process converges to the opti-
mal policy, our approach is designed for situa-
tionsinwhich computing theoptimal policyisin-
feasible. We provide examples of the process on
several largedecision problems, showingthat, for
these examples, the process constructs valuable
(but sub-optimal) policiesbefore the optimal pol-
icy would be available by traditional methods.

1 INTRODUCTION

The representational tools which decision analysts and
Al practitioners have devised can represent large deci-
sion problems. When costs of computation are not taken
into account, optimal policies can be determined using dy-
namic programming [Howard & Matheson, 1984; Shachter,
1986]. When the costs of computation are not negligible,
the cost of computing the optimal policy using dynamic
programming may be prohibitive.

We have devel oped an a gorithmwhich can be used to com-
pute policies for large multi-stage decision problems un-
der uncertainty represented as influence diagrams. Our ap-
proach isincremental, and uses abstraction. The algorithm
issufficiently general to make use of existingtoolsfor prob-
abilistic reasoning, and has already provided reasonably
valuable (but non-optimal) policiesfor influence diagrams
with about 2°! states.

The agorithm is an extension of the iterative refinement
technique presented in [Horsch & Poole, 1996], applied to

multi-stage influence diagrams. The refinement is applied
to the decision nodes in random access ordering (as op-
posed to the sequentia ordering of dynamic programming).

This paper isorganized as follows. First we briefly discuss
influence diagrams and the decision tree representation of
decision functions. Section 2 presents the random access
algorithm. Empirical resultsare presented in Section 3.

1.1 INFLUENCE DIAGRAMS

Aninfluence diagram (1D) isa DAG representing a sequen-
tial decision problem under uncertainty [Howard & Math-
eson, 1984]. An ID models the subjective beliefs, prefer-
ences, and avail abl e actionsfrom the perspective of asingle
decision maker.

Nodesinan ID are of threetypes. Random variables, which
the decision maker cannot control, are represented by circle
shaped chance nodes. Decisions, i.e., sets of mutually ex-
clusive actions which the decision maker can take, are rep-
resented by square shaped decision nodes. The set of out-
comes (or actions) which can be taken by a chance node X
(or decision node D) is specified by Q2 x (or 2p).

The diamond shaped value node represents the decision
maker’s preferences in the form of a value function.

Arcs represent dependencies. A chance node is condition-
ally independent of itsnon-descendantsgivenitsdirect pre-
decessors. The direct predecessors of a decision node will
be called information predecessors; a value for each of
these predecessors will be observed before an action must
be taken. The decision maker’s preferences are expressed
as a function of the value node's direct predecessors. The
set of a node's direct predecessors is specified by IT sub-
scripted by the node's label.

Dependencies are accompanied by numerical information.
Thereis aconditiona probability table associated with ev-
ery chance nodein theform P (X |TTx ) (unconditional, if it
has no predecessors). The value node V' has an associated
value function, V' : Qm, — R, which may be represented
asatable.
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Figure 1: The Car Buyer Problem, expressed as an influ-
ence diagram [ Smith, Holtzman, & Matheson, 1993].

A policy prescribes an action (or sequence of actions, if
there are severa decision nodes) for each possible combi-
nation of outcomes of itsinformation predecessors. The set
Q1 istheset of all possible combinationsof valuesfor de-
cision node D’s information predecessors. An element in
thisset will be called aninformationstate. A decisionfunc-
tion for decision node D isamapping d : O, — Op. A
policy foranID isaset A = {4;,7 = 1...n} of decision
functions, one for each decision node.

An optima policy maximizes the decision maker's ex-
pected vaue, without regard to the cost of finding such a
policy. If computationa costs are not negligible, the deci-
sion maker’s expected val ue might be maximized by a pol-
icy which isnot optimal in this sense.

For example, the ID in Figure 1 represents the problem of
decidingwhether or not tobuy aparticular car. Thedecision
maker hasthe option of performing anumber of teststo var-
ious components of the car. The results of these tests will
provide information to the decision to buy the car. The ac-
tual conditionof thecar isnot observabledirectly at thetime
the decision maker must act, but influences the final value
of thetransaction. A policy for thisproblemwould indicate
which tests to do under which circumstances, as well as a
prescription to buy the car (or not) given the results of the
tests. Due to space congtraints, none of the numerical data
required to complete the specification of this problem is
shown; thisinformation can befoundin [Qi & Poole, 1995;
Smith, Holtzman, & Matheson, 1993].

In this paper, IDs are assumed to have chance and decision
nodes with afinitenumber of discrete values. Furthermore,
we limit the discussion to IDswith a single value node.
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Figure 2: A policy for the influence diagram in Figure 1.
There are three decision trees, one for each decision node:
Test 1,Test 2andBuy Car?.

1.2 DECISION TREES

Let D be adecision nodein an ID. A decision tree 7" for
D iseither aleaf labelled by an action d; € Q2p or anon-
leaf node labelled with some X € I, . Each non-leaf has
achild decision tree for every value z;, € Qx. Aninfor-
mation predecessor X € Il appears at most once in any
pathfromtheroottoaleaf. Each vertex X inadecisiontree
has a context, ~x , defined to be the conjunction of variable
gnments on the path from theroot of thetreeto X. The
action at theleaf representstheactionto betaken inthecon-
text of theleaf. Given aninformation statew € 2, there
isa corresponding path through a decision tree for d, start-
ing at the root leading to aleaf, which islabelled with the
prescribed action to be taken in when w is observed.

Note that the context of an action need not contain an as-
signment for every variable in I1p. In this case, the in-
formation has not been used in the decision function, even
though it isavailable to the decision maker. In such asitu-
ation, a context is said to cover a set of information states.

A decisiontreerepresentsadecision function. Wewill refer
to the action prescribed by a decision function by §(w) for
information state w, or by d; if  isaleaf onagiven decision
tree.



Figure 2 shows three decision trees, one tree for each de-
cision node in the Car Buyer problem (Figure 1). The de-
cision tree for Test 1 is a single leaf, which tells the
decision maker to perform the test on the transmission.
Since there are no information predecessors for this deci-
sion node, thisdecision tree is complete.

The decision treefor Test 2 tellsthe decision maker not
to perform the test. Note that this decision node has 2 in-
formation predecessors. The decision tree does not make
use of the available information; every information stateis
mapped to the actionno t est.

Thedecisiontreefor Buy Car ? isanon-trivia tree, using
two of four information predecessors. This decision func-
tiontellsthedecision maker to check theresult fromthefirst
test: if thereisno result or if there are no defects, the deci-
sion maker is directed to buy the car. If theresult of Test
1 indicates one defect, the decision function uses theinfor-
mation fromthepreviousdecision Test 2. If thedecision
to take the second test had been made, the decision maker
should buy the car; if the decision maker did not have the
second test performed, the car shoul d be bought with aguar-
antee.

Notethat not all of theinformationisused. A policy which
used al of the availableinformation naively would have 96
leaf verticesfor Buy Car ?; many of these would be log-
ically impossible due to the asymmetries of the problem.
The problem iswell known for its asymmetry, and the op-
timal policy can be represented by decision trees very suc-
cinctly.

1.3 THE SINGLE STAGE ALGORITHM

The single stage information refinement algorithm con-
structs a decision tree for a influence diagram with a sin-
gledecision node. The following descriptionisabrief syn-
opsis. The algorithm has been described in more detail in
[Horsch & Poole, 1996], and is similar to algorithms de-
scribed in[Heckerman, Breese, & Horvitz, 1989; Lehner &
Sadigh, 1993].

For agiven leaf [ in adecision tree, its context ; is exten-
sibleif it does not contain al theinformation variables. We
refer to the information variables which are not in the con-
text as possibleextensions, writing¢;. A decisiontreet can
beextended if thereisaleaf with an extensible context; oth-
erwise, thetreeis caled complete.

The single stage a gorithm can be summarized as follows:
A decision tree is extended by removing an extensible | eaf
[ having context ~;. Thisleaf isreplaced with new avertex
X € &. The new vertex X isgiven anew leaf for every
value z; € Qx. Each leaf has a context v; which is the
assignment of values (X = x;) A v. Each leaf out of X
will be labelled with an action d; € Qp. Theaction d; is
the action which maximizes the expected utility in the new

contexty; = (X = z;) Ay (thisaction will be called the
MEV actionfor theleaf). Theinitial tree has oneleaf, which
isthe MEV action to be taken in the empty context.

Other refinement operators are possible. For example, an
extension might generate a branch for a particular value of
X, and summarize the remaining values in asingle branch.
Determining how and when to use this kind of operator is
an avenue for future research.

The sequence of trees created by the procedureis monoton-
ically non-decreasing in expected value. However, the pro-
cedure is myopic; there is no guarantee that the expected
value will increase with every extension of thetree.

Ideally, an algorithm would choose the extension which
maximizes the increase in expected value. Theincrease in
expected value due to a myopic extension can only be de-
termined after the extension has been made. Furthermore,
the best extension for a given decision tree can only be de-
termined by extending all the leaf verticesin the tree, and
looking at their respective effect on the value of the deci-
sion tree,

We use heuristicsto avoid computing all myopic extensions
for the decision tree. The problem of making the next ex-
tension is separated into two parts: the heuristic choice of a
leaf, and the strategic choice of an extensionfor aparticul ar
leaf. These tasks are orthogonal [Horsch & Poole, 1996].

We have implemented several heuristics to indicate which
leaf to extend. These heuristics are based on domain in-
formation available in the influence diagram in terms of
probability and expected value. For example, one heuristic
choosesto extend the leaf whose context has highest proba-
bility. With this heuristic, the most likely situationsare ex-
plored first. Another of our heuristicslooksat the expected
value of the possible actions at the leaf; this heuristic or-
ders leaf vertices according to the value of the runner up
to the MEV action at every leaf. Thisis called the second
best action heuristic, and isbased on theintuitionthat if the
value of the second best action is high, it must be close to
thevalueof thebest action. Inthiscase, it seems reasonable
to explorethe context further, sincethe context may be cov-
ering more refined contextsin which the respective actions
are very different in value.

Given that a particular leaf has been chosen to be refined,
an extension must be chosen for theleaf. There are severa
strategies which could be used to select one of the possible
extensions. For example, a possible extension can be se-
lected at random. The strategy which selects the extension
which maximizes the increase in expected utility is called
the maximal extension strategy. We have a so implemented
a greedy strategy which chooses the first extension it can
find which increases the value of the policy. These strate-
gies and heuristics are discussed in more detail in [Horsch,
1998].



2 RANDOM ACCESSREFINEMENT: AN
ANYTIME ALGORITHM

In this section, we present an anytime algorithm for com-
puting policies for multi-stage influence diagrams. A pol-
icy isrepresented by a collection of decision trees, one for
each decision node in the influence diagram. Asin Sec-
tion 1.3, these decision trees prescribe actions for contexts
which may not make use of al the information availableto
the decision maker. The policy isrefined by choosing aleaf
from one of these trees and applying a single refinement to
the leaf, keeping the rest of the policy fixed.

There isno a priori order in which the trees are refined,
which is a departure from standard dynamic programming
techniquesfor building an optimal policy. Furthermore, our
algorithm always has a policy available, refining it as until
the decision maker interruptsthe processto act.

While the high level outline of the process is simple, two
complications arise in the details. The first is that a de-
terministic decision tree (as described in Section 1.2) is
an inappropriate representation for a decision functionin a
multi-stage policy which isbeing refined. The second com-
plication is that for multi—stage decision problems, the re-
finement may have ramificationsfor the global policy. Nei-
ther of these complicationsoccur for single-stage problems.
We describe these complications and our solutions before
we present the complete algorithm.

2.1 STOCHASTIC DECISION FUNCTIONS

When thedecision maker hasto act, an unambiguouspolicy
must be available. In single stage problems, an unambigu-
ous policy is represented by a deterministic decision tree.
However, during deliberation of multi-stage decision prob-
lems, adeterministicdecisiontreeisnot asuitablerepresen-
tation of the decision function. Here we describe the prob-
lem, and our solution.

The refinement process splits contexts on information pre-
decessors. Consider the situationin which the decision tree
for Dy, isbeing refined by splitting on a previous decision
D;. Supposethat there are already a decision functionsfor
D; and Dy, and that both are represented as a deterministic
decisiontree. The split on D; will notincrease the expected
vaue of the decision function for D,,, since all but one of
the possibilitiesfor D; would be ruled out by the decision
functionfor D;. The splitisstill possible, but will havezero
effect on the value of the whole policy.

For example, consider Figure 2. If Test 2 were added to
the decision function for Buy Car ? &fter the algorithm
determined that no t est should be performed at Test

2, splitting on Test 2 could not have increased the ex-
pected value of the policy. In effect, a deterministic deci-
sion function is too committed for the purposes of refining

the policy.

To solve this problem, the existing policy can be treated as
a stochastic mapping from information state to action. For
each context, each avail abl e action has an associated proba-
bility, representing the belief that future refinement will en-
dorse the action as best in all more refined contexts. This
belief is computed by reasoning by cases:

P(dily) = pri + (1L — p)m;

Inthisexpression, p isthe probability that no further refine-
ment will occur after the current refinement step (with prob-
ability 1 — p, further refinements will occur); »; isthe prob-
ability that action d; will betaken if refinement stopsimme-
diately (r; = 1.0if action d; isthe MEV actioninthegiven
context, and 0.0 otherwise); m; is the probability that ac-
tion d; will be taken in any future context derived from the
given context.

The parameters p and m; are assessed by meta-level con-
siderations. We argue that m; should be close to unity if
the expected value of action d; isrdatively high, and close
to zero if the expected value is relatively low: one way to
reglizethisintuitionisto use m; « u(d;|y) where u(d;|7)
isthe expected value of action d; in context ~.

The choice of p is subject to fine tuning (similar to the case
of the learning rate in other machine learning algorithms).
We argue that p should increase asthe policy isrefined. In-
formal experiments indicate that there is a compromise to
be made in increasing the value of p. If p isincreased too
dowly or too quickly, the refinement processfailsto inves-
tigate worthwhile contexts.

A stochagtic decision tree represents the incomplete deci-
sion functions during the random access refinement pro-
cess. It differs from the decision trees discussed in Sec-
tion 1.2 only at the leaf vertices. Instead of a single action
(theMEV action), the stochastic decisiontreelabel sthel eaf
{ with a probability distribution over the actionsd € €ip,,

P(d|y).

When the refinement process halts, the uncertainty over ac-
tion in agiven context isresolved by settingp = 1.0.

22 THE GLOBAL EFFECTSOF LOCAL
REFINEMENT

The second complication isthat the refinement process has
global effects. For the purpose of refining a particular con-
text v within a decision tree, we assume the remainder of
the policy remains fixed. The decision function prescribes
an action d for context ~ aready, and the refinement of ~
may indicate that actions different from d are better for the
new contexts derived from 4! The change in the decision

!For refinements to have a positive effect on expected value,
a refinement needs to indicate different actions for different con-
texts.



function may cause changes to the probability of events af-
ter the stage; as well, the change in the decision function
may change the expected value of earlier decisions.

The changes must be reflected in the decision functions.
The expected value of each leaf must be recomputed (we
storethe expected value at the leaf of thedecision treg). As
well, we store in our decision trees the probability of each
vertex in every context, given the information which pre-
cedes it (from the root). These are recomputed as well.

For each internal vertex in &l decision trees which follow
D;, we need to recompute the posterior probability of the
chance node. These can be computed most efficiently us-
ing a depth first traversal of each tree, working from D; 4,
forwards. We observe that changing these probabilitieswill
also have an effect on the expected val ue of the policy, mag-
nifying the effects of refinement at D, .

After the posterior probabilitieshave been updated, the ex-
pected value of the leaf vertices needs to be recomputed.
These are computed starting with the decision tree D,,, and
working backwardsto D, . For each leaf [, we need to con-
dition on its context, and recompute the value of action d;
in context ;.

2.3 COMPUTING EXPECTED VALUE

To compute expected value, we convert the influence di-
agram to a Bayesian network, as described in [Shachter
& Peot, 1992; Horsch & Poole, 1996]. Briefly, the value
node is converted to a chance node; its conditional prob-
ability table represents the normalized value function and
its complement. We represent decision nodes by chance
nodes aswdll. Initialy, the arcs into decision—chance node
are dropped, and it is given a uniform probability distribu-
tion. When a decision tree is refined, an arc is added in
the network if the decision function becomes dependent on
an information predecessor. The decision function is in-
stalled into the Bayesian network by constructing a condi-
tional probability table consistent with the stochastic deci-
sion functionand P(D|y;) at each leaf [.

Using thistransformation, expected utility can be computed
by making a query to the network. The query P(D|vy)
gives MEV action for decision node D a given context,
where v isthevalue of theutility—chancenode V. Notethat
~ must be consistent with v before this query is made; in
our implementation, we check that P(v|y) is non-zero be-
fore we query for the MEV action. To find the expected
valueof an action d inagiven context v, we make thequery
P(V|dv). Asaresult, eachtimeaMEV action iscomputed,
3 queries are made to the network.

procedure Random Access Refinement

Input:
Multi-stage influence diagram with decision nodes
Dy,...,Dy
Output:
Policy A = {é1,...,6»}, aset of decision trees

For each D, initialize §; asasingle leaf
Do {
Choose an extensible decision tree §;
Choosealeaf from é;
Replace the leaf with an extension
Install the modified decision function
Update the global policy
} Until (stopping criteria are met or policy is complete)
Return the policy

Figure 3: The random access refinement algorithm.

24 THE RANDOM ACCESSREFINEMENT
ALGORITHM

The high level description of the algorithmisgivenin Fig-
ure 3. The algorithmis discussed briefly step by step.

Initialization: The initialization process considers each
decision node in order D,,,..., D;. For each decision
node, the probability distribution P(D;) is determined for
the empty context. This step requires three queries to the
Bayesian network for each decision node.

Choosing a decision function to refine:  We maintain a
priority queue of extensibleleaf vertices, ordered by heuris-
tic value. The queue contains pairs (D;,!) where D; isa
decision node, and { is a leaf on the decision tree for D;.
Thus, the heuristic value assigned to a leaf determines not
only the order inwhich the leaf verticesfor asingletreeare
extended, but also the the order in which the decision func-
tionsarerefined. Asaresult, decision functionsare refined
inorder of the heuristicimportance of therefinement, rather
than a predetermined sequence. The heuristics discussed in
Section 1.3 can be used for thisdual purpose.

Extending a given leaf: Asin the single stage a gorithm,
an extension ischosen for agiven leaf. Thiscan be doneby
one of the strategies described briefly in Section 1.3.

Updating the global policy: Each decision tree
Dit1, ..., D, has its observation probabilities updated:
for each vertex X, recompute P(X|yx). The chance
node representing the decision in the Bayesian network is
changed to match the update.

Each decisiontree D,,, ..., Dy hasits expected value up-
dated. For each leaf vertex, asinglequery for P(D]vy) will
provideavector of m; values, from which we can compute
P(D;|y) asin Section 2.1. The query P(V'|d"v) will give
the expected value of the best action. Finally, the chance
node representing the decision in the Bayesian network is
changed to match the update.



25 COMPLEXITY

We can analyze the cost of this procedure as follows. Sup-
pose a decision node has n information predecessors, each
with a most 4 values. To find a maximal extension for a
single lesf requires O(b(n — k)) expected value computa:
tions, where k is the number of internal vertices already in
the context for the lesf.

An update of the global policy requires one computation of
posterior probability for each internal vertex and 2 expected
value computations for each leaf. In the worst case dl the
stages have probabilitiesand expected values updated. The
total number of leaf nodeson all thetreesisO((b — 1) N +
D), where N isthe number of refinementswhich have been
madein total, and 1 isthe number of decision nodesin the
influence diagram. The total number of internal verticesin
al thedecisiontreesisO((b — 1) N + D).

Each computati on of expected valueisequivalent to aquery
in a Bayesian network [Shachter & Peot, 1992]. Thus, the
total cost, in terms of the number of queries to a Bayesian
network, of the a single refinement and update is O (b(n —
k) +3((b—1)N + D)).

In the worst case, the procedure requires O(b"+1) queries
just for the refinements for a complete policy. In the worst
case, the updates after each refinement add O(b*") total
queries updating the policy after each refinement. Thisis
substantially more effort than is required by an exhaustive
enumeration of the state space; however, for large state
spaces, apolicy isavailable for use by the decision maker
with much smaller cost than the limit of a complete policy.

The next section appliesthe random access refinement algo-
rithm to some large decision problems, demonstrating that
the process constructs valuable policies at a fraction of the
cost of computing the optimal policy using exhaustive enu-
meration.

3 EMPIRICAL RESULTS

The random access refinement process is intended to find
valuablepolicieswitharelatively small investment of com-
putational resources. A number of largeinfluence diagrams
were constructed to demonstrate that the algorithm does
achieve thisintention. The influence diagrams are identi-
cal in topology, but the conditional probabilitiesvary. The
problems have area interpretation, in contrast to randomly
generated problems. The purpose of running the algorithm
on dightly varying problemsisto demonstrate the effect of
variations in the problem on the performance of the ago-
rithm.

@

@

Action ‘

@

Figure 4. A influence diagram fragment, showing a single
stagefor variations of the maze walker problem. The prob-
lems solved in this paper iterate this structure ten times.

3.1 THEPROBLEMS

The decision problems are based on the model of an agent
traversing a maze. The mazes consist of walls and open
space, and are represented by squaretileswhose size corre-
spondtotheagent’ssinglestep. Theagent hasfiveavailable
actions: it can moveasinglestepinany of thefour compass
directionsN, S, E, W, or stay in place. The agent has four
sensors NS, ES, SS, WS, one in each compass direction.

The agent can only detect walls (with or without noise); the
agent’s position is not directly observable. The goal of the
agent isto arrive at a specified location in the maze.

The problem of choosing an action can be represented by
an influence diagram; the representation imposes a finite
structure on the problem, namely that the agent is limited
to a fixed number of actions. A single stage is shown
in Figure 4. The four sensors are directly connected to
the decision node. The two state variables affect the sen-
sorsdirectly, but are themselves not directly observable by
the agent. In principle, the single stage can be repeated
any number of times; no-forgetting arcs connect the maze
walker’s previous sensors and actions to the the current ac-
tion. In the figure, the no-forgetting arcs have not been
drawn.

The probabilistic information required by this influ-
ence diagram forms the agent model. Sensors can be
modelled with the conditional probability distributions
P(NS|X,Y), etc. Actuators can be modelled by the con-
ditional probability distributions P(New X |X,Y, Action)
and P(NewY|X,Y, Action, NewY).

Four agent model swere used in thistest. These correspond
to two sensor models: perfect and noisy; and two actuator
models: perfect and noisy. The perfect sensors aways de-
tect awall when thereis one, and never detect awall when
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Figure 5: The mazes for the maze walker problem. The
shaded tiles are obstacles, and there are walls around the
perimeter of the maze.

thereisn’t one. The noisy sensor model has probability 0.9
that awall is correctly detected, and 0.05 that awall isde-
tected when no wall isthere. The perfect actuators aways
put the agent in the correct square for a given action. The
noisy actuator model depends on adjacent walls and obsta
cles. The agent ends up in theright place for agiven action
with a probability of about 0.89, and with probability about
0.089, theagent failsto move. Thenoisy actuator hasavery
small probability (about 0.01) of moving to an incorrect ad-
jacent square.

The value function is not shown in the ID fragment. It de-
pends only on the position of the agent in the final stage,
and putsfull value (1.0) on being at the goal, and zero else-
where,

The mazes used in our experiments are shown in Figure 5
(Maze 1 isan example from [Littman, Cassandra, & Kael-
bling, 1995]). In our experiments, the agent is allowed ten
stages to reach the goal, which makes it possible to reach
the goal from each starting position. Using 10 stages, the
tenth decision node has 49 direct predecessors.

Maze 1 has a simple policy which guides the perfect agent
to the goal from each possible starting position. The policy
guidesthe agent south whenever possible, or otherwiseeast
whenever possible. If neither south nor east ispossible, the
agent moveswest, if possible, and otherwise staysin place.
Thisdecisionfunction isrepeated for thefirst 8 stages. The
final two steps of the policy direct the agent north one step
and east one step. This policy has an expected value of 1.0,
and can be represented by 8 decision trees which use 3 in-
ternal vertices each, followed by two decision trees which
need no internal vertices.

Maze 2 has an ambiguity which cannot be resolved by fol-
lowing a path to thegoa. An optimal policy can guidethe
perfect agent to the goa position from 24 of the 25 start-
ing positions of this maze, for a maximum expected value
of 0.96. We estimate that an optimal policy for the perfect
agent in this maze can be represented by 10 decision trees
using atotal of about 30 internal vertices.

We do not have optimal policiesfor Mazes 3 and 4, but al
the ambiguitiesin these mazes can be resolved along a path
tothegod, i.e, thereexist policies which guide the perfect
agent to the goal from al starting positions; these policies
have expected value of 1.0. We estimate that the optimal
policies can be represented by 10 decision trees using be-
tween 20 and 30 internal verticesin totdl.

The optimal policies for the agents with imperfect sensors
or actuators are unknown; the value of the optimal policy
dependsin part on the difficulty of the maze.

32 THERESULTS

The random access refinement algorithm was applied to
these problems. The second best action heuristic was used
to select leaf verticesto extend, and the maximal extension
strategy was used to extend each leaf. The algorithm had
20 extensionsin total alocated for each problem. Notethat
this resource limit excludes the optimal policy for al the
mazes. The average runtimeon a SPARC Ultra-2 for these
problems was 73 minutes.

Figure 6 shows 4 datasets, corresponding to the variations
of theagent model navigatingMaze 1. The x-axis measures
computational costs, in terms of the number of posterior
probabilitiesand expected vaues computed (queriesto the
Bayesian network). The y-axis measures expected val ue of
each policy. Each point on a curve represents the value of a
policy in the sequence of policies constructed by the algo-
rithm. Thefirst policy isthe same for each of the problems,
and represents the value of acting randomly before any de-
liberation has occurred.

For the perfect agent, the algorithm does not find the op-
timal policy using the alotted resources, but levels off at
an expected value of 0.869565 after 2280 steps. The policy
guides the agent to the goa from 20 of the 23 starting po-
sitions. Thisis roughly what one might expect, given that
the optimal policy uses 24 interna vertices, and the algo-
rithm was given resources to include only 20 internal ver-
tices. The error here is 13% from optimal. We do not cur-
rently know whether the refinement processwill find an op-
timal policy in reasonabletime.

The curvesin Figure 6 give an indication of how the con-
ditional probabilitiesunderlying the agent modd affect the
performance profile. When the probabilitiesare very sharp,
and afew states contain most of the probability mass (asin
the case of the perfect agent), the increases tend to be steep
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Figure 6: The performance of the random access refinement algorithm using various agent models for the Maze Walker

problem (Maze 1).

and plateaus are common. Asthe probability massof isdis-
tributed over many more states (as in the agent with noisy
sensors and noisy actuators), the increases tend to be less
steep, and the plateaus shorter. These curves are typical.

Table 1 summarizes the performance of the various agents
in the various mazes. The error for the perfect agent for all
four mazes is 13%, 20%, 30% and 9%, respectively. For
comparison, exhaustive enumeration would require more
than 2°° queries to compute complete policies. 2

For some of the agent model s, the algorithm produces poli-
cieswhich decrease in value (for example, in therange of 0
to 500 queriesin Figure 6). This behaviour isthe result of
making alocal refinement when the commitment to the cur-
rent policy isweak. The refinement takes advantage of the
relatively high probability of anon-MEV action. When the
effects of therefinement are made global, the non-MEV ac-
tiondropsin probability, and any actionwhich was based on
the non-MEV action will drop in value. Thisdrop in value
istemporary, and further refinement, stronger commitment,
and global updates correct for the decrease.

Thecurvefor theagent with noisy actuatorsand perfect sen-
sors also shows dlight decreases in expected vaue in the
range of 3500 to 5500 steps, followed by dlight increases.
This decrease has the same explanation as the more dra-
matic decreases observable earlier in the sequence. The ef-

2To get an idea of the scale of this number: the figure is about
10 cm wide; at this scale, 2°° queries is approximately 15 light-
hoursto theright. It would take about 23 billion yearsto compute
according to the average reported above.

fect issmaller since the commitment to the MEV actionis
stronger.

Also of noteisthe fact that the algorithm is able to find a
policy for the agent with noisy actuatorsand perfect sensors
which exceeds the value of the best policy for the perfect
agent. Thisbehavior isdueto the heuristics used by the al-
gorithm. Inthe case of the perfect agent, the heuristic chose
to examine a certain set of contextsfirst. The noisy actua
torsin the other agent gave a different heuristic valueto the
contexts.

Some of the variations on the Maze Walker have a rela-
tively large number of impossible information states; poli-
cies which summarize a large subspace of the information
set can exploit these asymmetries, by not refining impossi-
blecontexts. Furthermore, if thereisasubset of information
states which cover most of the probability mass, itis possi-
bleto summarize alarge portion of the state space by exam-
ining the most likely observations. Druzdze! [1994] argues
that it is common for a few states to cover alarge portion
of the total probability massin ajoint probability distribu-
tion. Thusit seems reasonable to expect that policieswhich
contain a small number of contextswill achievefairly high
value. The data presented in this paper support this expec-
tation.

Finally, it isimportant to acknowledge that the space of IDs
isvery large, and the set of problemstreated in this section
isasmall sample from a highly restricted subclass of 1Ds.
The evidence in this section suggests that there exist large
problemsfor which random access refinement can find poli-



Agent Model Best Agent Model Best
Sensor/Actuator | Policy | Steps Sensor/Actuator | Policy | Steps
Perfect/Perfect | 0.8696 | 2280 Perfect/Perfect | 0.7692 | 4962
Perfect/Noisy | 0.8874 | 6236 Perfect/Noisy 0.5159 | 5355
Noisy/Perfect | 0.7767 | 6374 Noisy/Perfect 0.5887 | 5838
Noisy/Noisy | 0.7045 | 6474 Noisy/Noisy 0.4703 | 5775
Maze 1 Maze 2
Agent Model Best Agent Model Best
Sensor/Actuator | Policy | Steps Sensor/Actuator | Policy | Steps
Perfect/Perfect | 0.7037 | 4522 Perfect/Perfect | 0.9130 | 4564
Perfect/Noisy | 0.5452 | 5581 Perfect/Noisy | 0.6511 | 6219
Noisy/Perfect | 0.6169 | 6079 Noisy/Perfect | 0.6760 | 5319
Noisy/Noisy | 0.4933 | 5799 Noisy/Noisy | 0.6270 | 6162
Maze 3 Maze 4

Table 1: A summary of the best policiesfound by the random access refinement algorithmapplied to several large decision
problems. The optimal policy for the perfect agentsis known to have expected value 1.0 for mazes 1, 3 and 4, and 0.96 for
maze 2. The optimal policy for these problems could be computed using dynamic programming, requiring about 260 steps.

cies which are reasonably valuable policies using reason-
able amounts of computational resources. These problems
aretoo large to solve using traditional methods.

4 RELATED WORK

The information refinement approach is closely related
to learning classification trees in machine learning (e.g.,
[Quinlan, 1986]). Heckerman et al.[1989] discusses an
algorithm which constructs policies in a similar manner.
Their interest isin representing a policy which can be used
effectively by the decision maker on-line. The costs of
building the decision tree are not taken into account; the
costs of using the decision tree are compared to the cost of
other onine approaches.

Lehner and Sadigh [1993] also discusses the issue of com-
piling adecision problem into a situation-actiontree. They
do not emphasize computationa cost; their goal is to take
a complex problem and cresate rules for use by human de-
cision makers. They determine the best decision tree of a
certain size, regardless of the cost of computing them.

Zhang & Boerlage [1995] simplify decision problems by
removing inconsistent information states and “insignificant
details’ before constructing a policy for the problem. The
significance of the details in the information state is mea
sured in terms of the effects of the information state on the
posterior probabilitiesof (unobservable) state variables.

Horvitz and Klein [1993] describe a decision theoretic ap-
proach to categorization based on utility. By aggregating
states with similar utility values, and actions with similar
values, decision models can be simplified for increased ef-
ficiency. Poh and Horvitz [1993] presents a greedy ap-

proach to exploring how random variables in a decision
model might be refined, i.e., how they can be given amore
fine—grained set of values, to increase the utility of a deci-
sion. Thiswork isintended to automate some of the effort
that a decision analyst would put into reframing a decision
problem, and deal s with the refinement problem on alower
level than information refinement.

Information refinement isclosely related to “input general -
ization” which is used to help deal with large state spaces
in reinforcement learning. Chapman and Kaelbling [1991]
adapt the Q-learning algorithmfor large i nput spaces by us-
ing a decision tree in place of the table to represent the (-
function. The decision tree is extended by “splitting” the
function on significant input bits, as determined by testsfor
perceptua and value significance.

5 CONCLUSIONS

We have described an anytime agorithm for information
refinement in multi-stage decision problems represented as
influence diagrams. The process builds a stochastic deci-
sion tree for each decision node in the influence diagram.
Each treeisinitialized to be asingle leaf labelled with the
best action to perform without using any of theavailablein-
formation. A leaf is chosen heuristically, and is replaced
with an extension. A probability distribution is imposed
over the actionsin the policy, which is a subjective assess-
ment of the probability that any particular actionwill becar-
ried out once the anytime refinement processishalted. The
global effects of the refinement are propagated through the
decision trees of the policy; probabilities are recomputed
for decision trees following the refinement, and all leaf ver-
tices are recomputed in al the decision trees.



The procedure is very expensive asymptotically, and it is
possible to construct an influence diagram for which the
anytime algorithm will construct policies which are have
no more than 50% of the expected value of the the optimal
policy aslong as no contexts are complete. An example of
thiskind of influence diagram has only uniform probability
distributions and a value function in the form of the parity
function on itsinputs.

The results shown in this paper demonstrate that informa-
tion refinement constructs reasonably valuable policies for
large decision problems using reasonable amounts of com-
putational resources. For some of the influence diagrams
treated in this paper, no optimal policy is known. These
problems are too large to enumerate the information space
exhaudtively.
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