
Logic Programming� Abduction and

Probability�

a top�down anytime algorithm for

estimating prior and posterior probabilities

David Poole�

Department of Computer Science�

University of British Columbia�

Vancouver� B�C�� Canada V�T �Z�

poole�cs�ubc�ca

March ��� ����

Abstract

Probabilistic Horn abduction is a simple framework to combine

probabilistic and logical reasoning into a coherent practical frame�

work� The numbers can be consistently interpreted probabilistically�

and all of the rules can be interpreted logically� The relationship be�

tween probabilistic Horn abduction and logic programming is at two

levels� At the �rst level probabilistic Horn abduction is an extension

of pure Prolog� that is useful for diagnosis and other evidential rea�

soning tasks� At another level� current logic programming implemen�

tation techniques can be used to e�ciently implement probabilistic

Horn abduction� This forms the basis of an �anytime� algorithm for

estimating arbitrary conditional probabilities� The focus of this paper

is on the implementation�

�Scholar� Canadian Institute for Advanced Research

�

Logic Programming� Abduction and Probability �

� Introduction

Probabilistic Horn Abduction ���� ��� ��� is a framework for logic�based ab�
duction that incorporates probabilities with assumptions� It is being used
as a framework for diagnosis ���� that incorporates both pure Prolog and
discrete Bayesian Networks ���� as special cases ����� This paper is about
the relationship of probabilistic Horn abduction to logic programming� This
simple extension to logic programming provides a wealth of new applications
in diagnosis� recognition and evidential reasoning �����

This paper also presents a logic�programming solution to the problem in
abduction of searching for the 	best
 diagnoses �rst� The main features of
the approach are�

� We are using Horn clause abduction� The procedures are simple� both
conceptually and computationally for a certain class of problems�� We
develop a simple extension of SLD resolution to implement our frame�
work�

� The search algorithms form 	anytime
 algorithms that can give an
estimate of the conditional probability at any time� We do not generate
the unlikely explanations unless we need to� We have a bound on the
probability mass of the remaining explanations which allows us to know
the error in our estimates�

� A theory of 	partial explanations
 is developed� These are partial
proofs that can be stored in a priority queue until they need to be
further expanded� We show how this is implemented in a Prolog inter�
preter in Appendix A�

� Probabilistic Horn abduction

The formulation of abduction used is a simpli�ed form of Theorist ���� ���
with probabilities associated with the hypotheses� It is simpli�ed in being
restricted to de�nite clauses with simple forms of integrity constraints sim�
ilar to that of Goebel et� al� ������ This can also be seen as a generalisation
of an ATMS ���� to be non�propositional�

Logic Programming� Abduction and Probability �

The language is that of pure Prolog i�e�� de�nite clauses� with special
disjoint declarations that specify a set of disjoint hypotheses with associated
probabilities� There are some restrictions on the forms of the rules and the
probabilistic dependence allowed� The language presented here is that of ����
rather than that of ���� ����

The main design considerations were to make a language the simplest
extension to pure Prolog that also included probabilities not just numbers
associated with rules� but numbers that follow the laws of probability� and so
can be consistently interpreted as probabilities ������ We are also assuming
very strong independence assumptions� this is not intended to be a tempo�
rary restriction on the language that we want to eventually remove� but as
a feature� We can represent any probabilistic information using only inde�
pendent hypotheses ����� if there is any dependence amongst hypotheses� we
invent a new hypothesis to explain that dependency�

��� The language

Our language uses the Prolog conventions� and has the same de�nitions of
variables� terms and atomic symbols�

De�nition ��� A de�nite clause or just 	clause
� is of the form� a� or
a� a� � � � � � an� where a and each ai are atomic symbols�

De�nition ��� A disjoint declaration is of the form

disjoint�h� � p�� � � � � hn � pn���

where the hi are atoms� and the pi are real numbers � � pi � � such that
p� � � � � � pn � �� Any variable appearing in one hi must appear in all of
the hj i�e�� the hi share the same variables�� The hi will be referred to as
hypotheses�

Any ground instance of a hypothesis in one disjoint declaration� cannot be
an instance of another hypothesis in any of the disjoint declarations either
the same declaration or a di�erent declaration� nor can it be an instance of
the head of any clause� This restricts the language so that we cannot encode
arbitrary clauses as disjoint declarations� Each instance of each disjoint dec�
laration is independent of all of the other instances of disjoint declarations
and the clauses�

Logic Programming� Abduction and Probability �

De�nition ��� A probabilistic Horn abduction theory which will be
referred to as a 	theory
� is a collection of de�nite clauses and disjoint dec�
larations�

Given theory T � we de�ne

FT the facts� is the set of de�nite clauses in T together with the clauses of
the form

false� hi � hj

where hi and hj both appear in the same disjoint declaration in T � and
i �� j� Let F �

T be the set of ground instances of elements of FT �

HT to be the set of hypotheses� the set of hi such that hi appears in a
disjoint declaration in T � Let H �

T be the set of ground instances of
elements of HT �

PT is a function H �
T �� ��� ��� PT h�i� � pi where h�i is a ground instance of

hypothesis hi� and hi � pi is in a disjoint declaration in T �

Where T is understood from context� we omit the subscript�

De�nition ��� ���� ��� If g is a closed formula� an explanation of g from
hF�Hi is a set D of elements of H � such that

� F �D j� g and

� F �D �j� false�

The �rst condition says that D is a su�cient cause for g� and the second says
that D is possible�

De�nition ��� A minimal explanation of g is an explanation of g such
that no strict subset is an explanation of g�

Logic Programming� Abduction and Probability �

��� Assumptions about the rule base

Probabilistic Horn abduction also contains some assumptions about the rule
base� It can be argued that these assumptions are natural� and do not really
restrict what can be represented ����� Here we list these assumptions� and
use them in order to show how the algorithms work�

The �rst assumption we make is about the relationship between hypothe�
ses and rules�

Assumption ��� There are no rules with head unifying with a member of
H�

Instead of having a rule implying a hypothesis� we can invent a new atom�
make the hypothesis imply this atom� and all of the rules imply this atom�
and use this atom instead of the hypothesis�

Assumption ��� acyclicity� If F � is the set of ground instances of elements
of F � then it is possible to assign a natural number to every ground atom
such that for every rule in F � the atoms in the body of the rule are strictly
less than the atom in the head�

This assumption is discussed by Apt and Bezem ����

Assumption ��	 The rules in F � for a ground non�assumable atom are cov�
ering�

That is� if the rules for a in F � are

a� B�

a� B�
���

a� Bm

if a is true� one of the Bi is true� Thus Clark�s completion ��� is valid for
every non�assumable� Often we get around this assumption by adding a rule

a� some other reason for a

and making 	some other reason for a
 a hypothesis �����

Logic Programming� Abduction and Probability �

Assumption ��
 The bodies of the rules in F � for an atom are mutually
exclusive�

Given the above rules for a� this means that for each i �� j� Bi and Bj

cannot both be true in the domain under consideration�� We can make this
true by adding extra conditions to the rules to make sure they are disjoint�

Associated with each possible hypothesis is a prior probability� We use
this prior probability to compute arbitrary probabilities� Our �nal assump�
tion is to assume that logical dependencies impose the only statistical depen�
dencies on the hypotheses� In particular we assume�

Assumption ���� Ground instances of hypotheses that are not inconsistent
with FT � are probabilistically independent�

The only ground instances of hypotheses that are inconsistent with FT

are those of the form hi� and hj�� where hi and hj are di�erent elements
of the same disjoint declaration� Thus di�erent disjoint declarations de�ne
independent hypotheses� Di�erent instances of hypotheses are also indepen�
dent� Note that the hypotheses in a minimal explanation are always logically
independent� The language has been carefully set up so that the logic does
not force any dependencies amongst the hypotheses� If we could prove that
some hypotheses implied other hypotheses or their negations� the hypotheses
could not be independent� The language is deliberately designed to be too
weak to be able to state such logical dependencies between hypotheses�

See ���� for more justi�cation of these assumptions�

��� Some Consequents of the Assumptions

Lemma ���� Under assumption ����� if there is at least ony hypothesis with
a free variable� then distinct ground terms denote di�erent individuals�

Proof� If t� and t� are distinct ground terms� then t� �� t��
Otherwise� suppose t� � t�� If hX� is a hypothesis� then ht��
cannot be independent of ht�� as they are logically equivalent�
which violates assumption ����� �

�We do not insist that we are able to prove neg�Bi � bj�� Typically we cannot� This is
a semantic restriction� There is� however� one syntactic check we can make� If there is a
set of independent �see assumption ����� hypotheses from which both Bi and Bj can be
derived then the assumption is violated�

Logic Programming� Abduction and Probability �

The following lemma can be easily proved�

Lemma ���� Under assumptions ��� and ���� minimal explanations of ground
atoms or conjunctions of ground atoms are mutually inconsistent�

Lemma ���� A minimal explanation of a ground atom cannot contain any
free variables�

Proof� If a minimal explanation of a ground atom contains
free variables� there will be in�nitely many ground explanations
of the atom substituting di�erent ground terms for the free vari�
ables�� Each of these ground explanations will have the same
probability� Thus this probability must be zero as we can sum
the probabilities of disjoint formulae� and this sum must be less
than or equal to one�� This contradicts the fact that the explana�
tions are minimal� and the hypotheses are independent� and each
positive� �

Lemma ���� ��� ��� Under assumptions ���� ��� and ���� if explg� T � is
the set of minimal explanations of ground g from theory T � and compT � is
Clark�s completion of the non assumables and includes Clark�s equational
theory� then�

compT � j�

�
�g 	

�
ei�expl�g�T �

ei

�
A

The following is a corollary of lemmata ���� and ����

Lemma ���� Under assumptions ���� ���� ���� ��� and ����� if explg� T � is
the set of minimal explanations of conjunction of atoms g from probabilistic
Horn abduction theory T �

P g� � P

�
� �
ei�expl�g�T �

ei

�
A

�
X

ei�expl�g�T �

P ei�

�For the case we have here� Console et� al��s results �	
 can be extended to acyclic
theories �the set of ground instances of the acyclic theory is a hierarchical theory� and we
only need really consider the ground instances��

Logic Programming� Abduction and Probability �

Thus to compute the prior probability of any g we sum the probabilities
of the explanations of g� Poole ���� proves this directly using a semantics
that incorporates the above assumptions�

To compute arbitrary conditional probabilities� we use the de�nition of
conditional probability�

P �j�� �
P � � ��

P ��

Thus to �nd arbitrary conditional probabilities P �j��� we �nd P ���
which is the sum of the explanations of �� and P � � �� which can be
found by explaining � from the explanations of �� Thus arbitrary condi�
tional probabilities can be computed from summing the prior probabilities
of explanations�

It remains only to compute the prior probability of an explanation D of
g�

Under assumption ����� if fh�� � � � � hng are part of a minimal explanation�
then

P h� � � � � � hn� �
nY

���

P hi�

To compute the prior of the minimal explanation we multiply the priors of
the hypotheses� The posterior probability of the explanation is proportional
to this�

��� An example

In this section we show an example that we use later in the paper� It is
intended to be as simple as possible to show how the algorithm works�

Suppose we have the rules and hypotheses��

rule��a �� b� h���

rule��a �� q�e���

rule��q �� h���

rule��q �� b�e���

rule��h �� b� f���

�Here we have used a syntax rule��H �� B�� to represent the rule H � B� This is
the syntax that is accepted by the code in Appendix A�

Logic Programming� Abduction and Probability �

rule��h �� c� e���

rule��h �� g� b���

disjoint��b�����c���	
��

disjoint��e�����f�����g����
��

There are four minimal explanations of a� namely fc� eg� fb� eg� ff� bg and
fg� bg�

The priors of the explanations are as follows�

P c � e� � ���
 ��� � �����

Similarly P b � e� � ����� P f � b� � ���� and P g � b� � ����� Thus

P a� � ���� � ���� � ���� � ���� � ����

There are two explanations of e � a� namely fc� eg and fb� eg� Thus
P e � a� � ����� Thus the conditional probability of e given a is P eja� �
�������� � ������

What is important about this example is that all of the probabilistic
calculations reduce to �nding the probabilities of explanations�

��� Tasks

The following tasks are what we expect to implement�

�� Generate the explanations of some goal conjunction of atoms�� in or�
der�

�� Estimate the prior probability of some goal� This is implemented by
enumerating some of the explanations of the goal�

�� Estimate the posterior probabilities of the explanations of a goal i�e��
the probabilities of the explanations given the goal��

�� Estimate the conditional probability of one formula given another�
That is� determining P �j�� for any � and ��

Each of these will be computed using the preceding task� The last task is
the essential task that we need in order to make decisions under uncertainty�

All of these will be implemented by enumerating the explanations of a
goal� and estimating the probability mass in the explanations that have not
been enumerated� It is this problem that we consider for the next few sec�
tions� and then return to the problem of the tasks we want to compute�

Logic Programming� Abduction and Probability ��

� A top�down proof procedure

In this section we show how to carry out a best��rst search of the explana�
tions� In order to do this we build a notion of a partial proof that we can
add to a priority queue� and restart when necessary�

��� SLD�BF resolution

In this section we outline an implementation based on logic programming
technology and a branch and bound search�

The implementation keeps a priority queue of sets of hypotheses that
could be extended into explanations 	partial explanations
�� At any time
the set of all the explanations is the set of already generated explanations�
plus those explanations that can be generated from the partial explanations
in the priority queue�

De�nition ��� a partial explanation is a structure

hg � C�Di

where g is an atom or conjunction of atoms�� C is a conjunction of atoms
and D is a set of hypotheses�

Figure � gives an algorithm for �nding explanations of q in order of prob�
ability most likely �rst��

We have the following data structures�

Q is a set of partial explanations implemented as a priority queue��

� is a set of explanations of g that have been generated initially empty��

NG is the set of pairs hhi� hji such that hi and hj are di�erent hypotheses
in a disjoint declaration N�B� hi and hj share the same variables��

At each step we choose an element

hg � C�Di

of the priority queue Q� Which element is chosen depends on the search
strategy e�g�� we could choose the element with maximum prior probability
of D��

Logic Programming� Abduction and Probability ��

Q �� fhg � g� fgig�
� �� fg�
repeat

choose and remove best hg � C�Di from Q�
if C � true
then if goodD� then � �� � � fDg endif
else Let C � a � R

for each ruleh� B� where mgua� h� � �
Q �� Q � fhg� B �R�Di �g �

if a � h� where h � H and goodfag �D�
then Q �� Q � fhg � R� fag �Dig

endif
endif

until Q � fg
where goodD� 	 �d�� d� � D � � � NG � hd�� d�i � ���

Figure �� SLD�BF Resolution to �nd explanations of g in order�

Logic Programming� Abduction and Probability ��

We have an explanation when C is the empty conjunction represented
here as true�� In this case D is added to the set � of already generated
explanations�

Otherwise� suppose C is conjunction a � R�
There are two operations that can be carried out� The �rst is a form of

SLD resolution ����� where for each rule

h� b� � � � � � bn

in F � such that h and a have most general uni�er �� we generate the partial
explanation

hg � b� � � � � � bn �R�Di �

and add it to the priority queue�
The second operation is used when a is an instance not necessarily

ground� of a possible hypothesis� In this case we produce the partial ex�
planation

hg � R� fag �Di

and add it to Q� We only do this if fag�D is consistent� To check consistency�
we use the set NG of pairs of hypotheses that appear in the same disjoint
declaration corresponding to nogoods in an ATMS ������ Unlike in an ATMS�
this set can be built at compile time from the disjoint declarations� A set of
hypotheses is inconsistent only if there are two elements of the set that are
instances of a nogood�

This procedure will enumerare the explanations e�g�� in order of likeli�
hood�� Its correctness is based on the meaning of a partial explanation

De�nition ��� A partial explanation hg � C�Di is valid with respect to
hF�Hi if

F j� D � C � g

Lemma ��� Every partial explanation in the queue Q is valid with respect
to hF�Hi�

Proof� This is proven by induction on the number of times
through the loop�

It is trivially true initially as q� q for any q�

Logic Programming� Abduction and Probability ��

There are two cases where elements are added to Q� In the �rst
case the 	rule
 case� we know

F j� D �R � a� g

by the inductive assumption� and so

F j� D �R � a� g��

We also know
F j� B � h��

As a� � h�� by a simple resolution step we have

F j� D �R �B � g���

The other case is when a � H� By the induction step

F j� D � a �R� � g

and so
F j� D � a� �R� g

If D only contains elements of H and a is an element of H then
fag � D only contains elements of H� �

It is now trivial to show the following�

Corollary ��� Every element of � in Figure � is an explanation of q�

Although the correctness of the algorithm does not depend on which
element of the queue we choose at any time� the e�ciency may particularly
when we do not run the algorithm to completion� see Section ����� We could
use a best��rst strategy ���� where we choose the best partial explanation
based on the following ordering of partial explanations� partial explanation
hg� � C��D�i is better than hg� � C��D�i if P D�� � P D���� It is simple
to show that 	better than
 is a partial ordering� When we choose a 	best

partial explanation we choose a minimal element of the partial ordering�

�ByDi we mean the conjunction of the elements ofDi� The conjunction of the elements
of the empty set is true� thus P �fg� � � which will always be a best partial explanation�

Logic Programming� Abduction and Probability ��

where there are a number of equally minimal partial explanations� we can
choose any one� When we follow this de�nition of 	best
� we enumerate the
minimal explanations of q in order of probability�

Other search strategies can be used� for example� depth�bounded search
and iterative deepening search� The algorithm is independent of the search
strategy used� but for concreteness of the examples and the discussion we
assume the best��rst strategy is used�

��� Our example

In this section we show how the simple example in Section ��� is handled by
the best��rst proof process�

The following is the sequence of values of Q each time through the loop
where there are a number of minimal explanations� we choose the element
that was added last��

fha� a� fgig
fha� b � h� fgi � ha� q � e� fgig
fha� q � e� fgi � ha� h� fbgig
fha� h � e� fgi � ha� b � e � e� fgi � ha� h� fbgig
fha� b � f � e� fgi � ha� c � e � e� fgi �
ha� g � b � e� fgi � ha� b � e � e� fgi � ha� h� fbgig

fha� c � e � e� fgi � ha� g � b � e� fgi �
ha� b � e � e� fgi � ha� f � e� fbgi � ha� h� fbgig

fha� g � b � e� fgi � ha� b � e � e� fgi � ha� e � e� fcgi �
ha� f � e� fbgi � ha� h� fbgig

fha� b � e � e� fgi � ha� e � e� fcgi � ha� f � e� fbgi �
ha� h� fbgi � ha� b � e� fggig

fha� e � e� fcgi � ha� e � e� fbgi � ha� f � e� fbgi �
ha� h� fbgi � ha� b � e� fggig

fha� e� fe� cgi � ha� e � e� fbgi � ha� f � e� fbgi �
ha� h� fbgi � ha� b � e� fggig

fha� true� fe� cgi � ha� e � e� fbgi � ha� f � e� fbgi �
ha� h� fbgi � ha� b � e� fggig

Logic Programming� Abduction and Probability ��

Thus the �rst� and most likely explanation is fe� cg�

fha� e � e� fbgi � ha� f � e� fbgi � ha� h� fbgi �
ha� b � e� fggig

ha� f � e� fbgi � ha� h� fbgi � ha� e� fe� bgi �
fha� b � e� fggig

fha� h� fbgi � ha� e� fe� bgi � ha� b � e� fggi �
ha� e� ff� bgig

fha� b � f� fbgi � ha� c � e� fbgi � ha� g � b� fbgi �
ha� e� fe� bgi � ha� b � e� fggi � ha� e� ff� bgig

fha� f� fbgi � ha� c � e� fbgi � ha� g � b� fbgi �
ha� e� fe� bgi � ha� b � e� fggi � ha� e� ff� bgig

fha� c � e� fbgi � ha� g � b� fbgi � ha� e� fe� bgi �
ha� b � e� fggi � ha� true� ff� bgi � ha� e� ff� bgig

Here the algorithm e�ectively prunes the top partial explanation as hc� bi
forms a nogood�

fha� g � b� fbgi � ha� e� fe� bgi � ha� b � e� fggi �
ha� true� ff� bgi � ha� e� ff� bgig

fha� e� fe� bgi � ha� b � e� fggi � ha� true� ff� bgi �
ha� e� ff� bgi � ha� b� fg� bgigg

fha� true� fe� bgi � ha� b � e� fggi � ha� true� ff� bgi �
ha� e� ff� bgi � ha� b� fg� bgig

We have now found the second most likely explanation� namely fe� bg�

fha� b � e� fggi � ha� true� ff� bgi � ha� e� ff� bgi �
ha� b� fg� bgig

fha� true� ff� bgi � ha� e� ff� bgi � ha� e� fg� bgi �
ha� b� fg� bgig

We have thus found the third explanation ff� bg�

fha� e� ff� bgi � ha� e� fg� bgi � ha� b� fg� bgig
fha� e� fg� bgi � ha� b� fg� bgig
fha� b� fg� bgig
fha� true� fg� bgig

The fourth explanation is fg� bg� There are no more partial explanations
and the process stops�

Logic Programming� Abduction and Probability ��

� Discussion

��� Probabilities in the queue

The point of the algorithm is to not let it run to completion� but to form the
basis of an 	anytime
 algorithm ���� which can at any stage give an estimate
of prior and posterior probabilities� and also provide an error guarantee�

We would like to give an estimate for P g� after having generated only a
few of the most likely explanations of g� and get some estimate of our error�
We can use � and Q to estimate the prior probabilities of g and to give a
bound on the error of our estimate�

If hg � C�Di is in the priority queue� then it can possibly be used to
generate explanations D�� � � � �Dn� Each Di will be of the form D �D�

i� We
can place a bound on the probability mass of all of the Di� by

P D� � � � � �Dn� � P D � D�
� � � � � �D�

n��

� P D�

Given this upper bound� we can determine an upper bound for P g��
where fe�� e�� � � �g is the set of all minimal explanations of g�

P g� � P e� � e� � � � ��

� P e�� � P e�� � � � �

�

�
B�

X

ei found

P ei�

�
CA�

�
B�

X

ej to be generated

P ej�

�
CA

We can easily compute the �rst of these sums� and can put upper and
lower bounds on the second� This means that we can put a bound on the
range of probabilities of a goal based on �nding just some of the explanations
of the goal� Suppose we have goal g� and we have generated explanations ��
Let

P� �
X
D��

P D�

PQ �
X

D�hg�C�Di�Q

P D�

where Q is the priority queue�
We then have

Logic Programming� Abduction and Probability ��

Theorem ��� At the start of any iteration of the repeat loop in Figure ��
the prior probability of g can be bounded as follows�

P� � P g� � P� � PQ

As the computation progresses� the probability mass in the queue PQ
approaches zero	 and we get a better re�nement on the value of P g�� This
thus forms the basis of an 	anytime
 algorithm for Bayesian networks�

��� Conditional Probabilities

We can also use the above procedure to compute conditional probabilities�
Suppose we are trying to compute the conditional probability P �j��� This
can be computed from the de�nition�

P �j�� �
P � � ��

P ��

We compute the conditional probabilities by enumerating the minimal
explanations of � � � and �� Note that the minimal explanations of � �
� are explanations not necessarily minimal� of �� We can compute the
explanations of � � �� by trying to explain � from the explanations of ��

Figure � shows a modi�cation of the algorithm of Figure � to interleave
the explanation �nding
� We collect the explanations of � as we generate
them� and then expand these explanations to be explanations of � � ��

The elements of Q have either � or � at the left hand side of the ����
If they have �� then we are searching for explanations of �� when we have
found one say D� we want to explain � from this explanation of �� To do
this� we put � on the left hand side of the ���� and try to explain � starting
from the explanation found for � i�e�� we add h�� ��Di to Q�� When we

�Note that the estimate given above does not always decrease� It is possible that the
error estimate increases� Poole ���
 gives a bottomup procedure where convergence can
be guaranteed�

�This is simpli�ed in that we have removed the pruning of nogoods� and the use of
substitutions �to make the presentation simpler�� It is not di�cult to add the pruning code�
but you need to be careful to make sure that you appropriately prune the explanations
�e�g�� by not pruning explanations for � just because there is a simpler explanation for ���
Substitutions are as in Figure ��

Logic Programming� Abduction and Probability ��

Q �� fh� � �� fgig�
�� �� fg�
���� �� fg�
repeat

choose and remove best hg � C�Di from Q�
if C � true
then if g � �

then ���� �� ���� � fDg
else �� �� �� � fDg�

Q �� Q � fh�� ��Dig
endif

else Let C � a � R�
for each rulea� B�

Q �� Q � fhg � B � R�Di �g �
if a � H then Q �� Q � fhg � R� fag �Dig endif

endif
until Q � fg

Figure �� Simpli�ed SLD�BF Resolution to �nd P �j�� in order�

Logic Programming� Abduction and Probability ��

have found such an explanation i�e�� we have chosen h�� true�D�i from
Q�� then the corresponding assumption set D�� is an explanation of � � ��

Similarly to the case for computing prior probabilities� we are going to
use Q� �� and ���� at the start of some iteration of the repeat loop to give
us an estimate of posterior probabilities�

Let P � be the sum of the probabilities of the explanations of � enumer�
ated� That is�

P � �
X
����

P 	��

Let P ��� be the sum of the probabilities of the explanations of � � �
generated� That is�

P � �
X

������

P 	��

As before� let PQ be the sum of the probabilities of the partial descriptions
of the queue�

PQ �
X

D�hg�C�Di�Q

P D�

Theorem ��� At the beginning of any iteration of the repeat loop in Figure
�� if P �
 � the conditional probability is bounded as follows�

P ���

P � � PQ
� P �j�� �

P ��� � PQ
P �

Proof� We know Theorem ���� that P � � �� � P ��� � PQ�
and P �� � P �� thus we have

P �j�� �
P � � ��

P ��
�

P ��� � PQ
P �

Similarly� P � � �� � P ���� and P �� � P � � PQ� thus we have

P �j�� �
P � � ��

P ��
�

P ���

P � � PQ

�

The lower bound is the case where all of the partial descriptions in the
queue go towards worlds implying �� but none of these also lead to �� The
upper bound is the case where all of the elements of the queue go towards
implying �� from the explanations already generated for ��

Logic Programming� Abduction and Probability ��

��� Consistency and subsumption checking

One problem that needs to be considered is the problem of what happens
when there are free variables in the hypotheses generated� When we generate
the hypotheses� there may be some instances of the hypotheses that are
inconsistent� and some that are consistent� We know that every instance is
inconsistent if the subgoal is subsumed by a nogood� This can be determined
by substituting constants for the variables in the the subgoal� and �nding if
a subset uni�es with a nogood�

We cannot prune hypotheses because an instance is inconsistent� How�
ever� when computation progresses� we may substitute a value for a variable
that makes the partial explanation inconsistent� This problem is similar to
the problem of delaying negation�as�failure derivations ����� and of delaying
consistency checking in Theorist ����� We would like to notice such incon�
sistencies as soon as possible� In the algorithm of Figure � we check for
inconsistency each time a partial explanation is taken o� the queue� There
are cases where we do not have to check this explicitly� for example when we
have done a resolution step that did not assign a variable� There is a trade�o�
between checking consistency and allowing some inconsistent hypotheses on
the queue�� This trade�o� is beyond the scope of this paper�

Note that the assumptions used in building the system imply that there
can be no free variables in any explanation of a ground goal otherwise we
have in�nitely many disjoint explanations with bounded probability�� Thus
delaying subgoals eventually grounds all variables�

��� Iterative deepening

In many search techniques we often get much better space complexity and
asymptotically the same time complexity by using an iterative deepening
version of a search procedure ����� An iterative deepening version of the best�
�rst search procedure is exactly the same as the iterative deepening version
of A� ���� with the heuristic function of zero� The algorithm of Figure � is
given at a level of abstraction which does not preclude iterative deepening�

For our experimental implementations� we have used an interesting vari�
ant of iterative deepening� Our queue is only a 	virtual queue
 and we

�We have to check the consistency at some time� This could be as late as just before
the explanation is added to ��

Logic Programming� Abduction and Probability ��

only physically store partial explanations with probability greater than some
threshold� We remember the mass of the whole queue� including the val�
ues we have chosen not to store� When the queue is empty� we decrease
the threshold� We can estimate the threshold that we need for some given
accuracy� This speeds up the computation and requires less space�

��� Recomputing subgoals

One of the problems with the above procedure is that it recomputes expla�
nations for the same subgoal� If s is queried as a subgoal many times then
we keep �nding the same explanations for s� This has more to do with the
notion of SLD resolution used than with the use of branch and bound search�

We are currently experimenting with a top�down procedure where we
remember computation that we have computed� forming 	lemmata
� This
is similar to the use of memo functions ���� or Earley deduction ���� in logic
programming� but we have to be very careful with the interaction between
making lemmata and the branch and bound search� particularly as there may
be multiple answers to any query� and just because we ask a query does not
mean we want to solve it we may only want to bound the probability of the
answer��

One of the reasons that we wanted to present this at a high level of
abstraction rather than as an iterative deepening version such as ����� is to
allow for such ideas as creating lemmata� Based on our experience� there are
some cases where the lemma version is faster than even one iteration of the
depth�bounded search needed for an iterative deepening solution�

There is some connection between the idea of saving recomputing sub�
goals and D�Ambroisio�s ��� top�down search algorithm for computing pos�
terior probabilities in Bayesian networks� He carries out a precompilation
to determine the shared structure� and then does a top down search� His
representation language� however is not as rich as the language presented
here�

��� Bounding the priority queue

Another problem with the above procedure that is not solved by lemmati�
sation is that the bound on the priority queue can become quite large i�e��
greater than one�� Some bottom�up procedures ����� can be engineered to

Logic Programming� Abduction and Probability ��

have a tighter estimate of the probability mass of the queue in particular
a monotonically non�increasing estimate�� See ���� for a description of a
bottom�up procedure that can be compared to the top�down procedure in
this paper� In ���� an average case analysis is given on the bottom�up proce�
dure� while this is not an accurate estimate for the top�down procedure� the
case where the bottom�up procedure is e�cient ���� is the same case where
the top�down procedure works well� that is where there are normality condi�
tions that dominate the probability of each hypothesis i�e�� where all of the
probabilities are near one or near zero��

The bottom up procedures work only for less general propositional lan�
guages� The e�ciency is analogous to the di�erence between forward and
backward chaining on propositional Horn clauses� Bottom�up� we can com�
pute the set of consequences of a set of propositional Horn clauses in time
linear in the number of clauses we only need to chain on each clause once��
Backward search� however� can take exponential time for a particular goal�
Even given this� backward chaining approaches are still the most popular
e�g�� the use of Prolog�� It is for the same reasons that the top�down ap�
proach of this paper is useful�

� Comparison with other systems

There are many other proposals for logic�based abduction schemes e�g��
���� �� ��� ����� These� however� consider that we either �nd an arbitrary
explanation or �nd all explanations� In practice there are prohibitively many
of these� It is also not clear what to do with all of the explanations� there
are too many to give to a user� and the costs of determining which of the
explanations is the 	real
 explanation by doing tests ����� is usually not
outweighed by the advantages of �nding the real explanation� This is why it
is important to take into account probabilities� We then have a principled
reason for ignoring many explanations� Probabilities are also the right tool
to use when we really are unsure as to whether something is true or not� For
evidential reasoning tasks e�g�� diagnosis and recognition� it is not up to us
to decide whether some hypothesis is true or not� all we have is probabilities
and evidence to work out what is most likely true� Similar considerations
motivated the addition of probabilities to consistency�based diagnosis ����

There are many algorithms for abduction in logic programming e�g�� ���

Logic Programming� Abduction and Probability ��

��� ��� ����� that are similar to the resolution steps of Section ���� The main
advances of this paper are notion of an anytime algorithm� the explicit use
of the priority queue� the estimation of the prior and posterior probabilities
including error bounds�� and the use of two explanations being found at
once for conditional probabilities Section �����

Perhaps the closest work to that presented here is that of Stickel �����
His is an iterative deepening search for the lowest cost explanation� and at
that level can be seen as an iterative�deepening version of the algorithm
of Figure �� The problem he is trying to solve is to �nd the least cost
explanation� He does not consider probabilities but Charniak and Shimony
��� have interpreted cost�based abduction in terms of � log probabilities�� nor
does his algorithm form an anytime algorithm that can estimate probability
bounds� with a given error�

� Using existing logic programming technol�

ogy

In this section we show how the branch and bound search can be implemented
in Prolog� The basic idea is that when we are choosing a partial explanation
to explore� we can choose any of those with maximum probability� If we
choose the last one when there is more than one� we carry out a depth��rst
search much like normal Prolog� except when making assumptions� We only
add to the priority queue when making assumptions� and let Prolog do the
searching when we are not�

��� Remaining subgoals

Consider what subgoals remain to be solved when we are trying to solve a
goal� Consider the clause�

h� b� � b� � � � � � bm�

Suppose R is the conjunction of subgoals that remain to be solved after h
in the proof� If we are using the leftmost reduction of subgoals� then the
conjunction of subgoals remaining to be solved after subgoal bi is

bi�� � � � � � bm � R

Logic Programming� Abduction and Probability ��

The total information of the proof is contained in the partial explanation
at the point we are in the proof� i�e�� in the remaining subgoals� current
hypotheses and the associated answer� The idea we exploit is to make this
set of subgoals explicit by adding an extra argument to each atomic symbol
that contains all of the remaining subgoals�

��� Saving partial proofs

We would like for there to be enough information within each subgoal to prove
the top level goal it was created to solve� When we have a hypothesis that
needs to be assumed� the remaining subgoals and the current hypotheses form
a partial explanation which we save on the queue� We then fail the current
subgoal and look for another solution� If there are no solutions found i�e��
the top level computation fails�� we can choose a saved subgoal according
to the order given in section ����� and continue the search�

Suppose in our proof we select a possible hypothesis h of cost P fhg� with
U being the conjunction of goals remaining to be solved� and T the set of
currently assumed hypotheses with cost P T �� We only want to consider this
as a possible contender for the best solution if P fhg�T � is the minimal cost
of all proofs being considered� The minimal cost proofs will be other proofs of
cost P T �� These can be found by failing the current subgoal� Before we do
this we need to add U � with hypotheses fhg�T to the priority queue� When
the proof fails we know there is no proof with the current set of hypotheses�
we remove the partial proof with minimal cost from the priority queue� and
continue this proof�

We do a branch and bound search over the partial explanations� but when
the priorities are equal� we use Prolog�s search to prefer the last added� The
overhead on the resolution steps is low� we only have to do a couple more
simple uni�cations a free variable with a term�� The main overhead occurs
when we reach a hypothesis� Here we store the hypotheses and remaining
goals on a priority queue and continue or search by failing the current goal�
This is quick if we implement the priority queue e�ciently�� the overhead
needed to �nd all proofs is minimal�

Appendix A gives code necessary to run the search procedure�

Logic Programming� Abduction and Probability ��

� Conclusion

This paper has considered a logic programming approach that uses a mix
between depth��rst and branch�and�bound search strategies for abduction
where we want to consider probabilities� and only want to generate the most
likely explanations� The underlying language ���� is a superset of pure Pro�
log� and also an extension of Bayesian networks ����� We thus have a logic
programming solution to the problem of inference �nding posterior proba�
bilities� in Bayesian networks� that turns out to be very di�erent to the sorts
of algorithms used for Bayesian networks ����� This complements the work
on other search algorithms in Bayesian networks ����� which can be seen as
bottom�up versions of the top�down search algorithm presented here�

A Prolog interpreter

This appendix gives a brief overview of a meta�interpreter� Hopefully it is
enough to be able to build a system� Our implementation contains more
bells and whistles� but the core of it is here�

N�B� This interpreter does not do an occurs check� Thus it is not sound�
We consider this is an important problem� but the solution ���� is orthogonal
to the issues in this paper� and will complicate the presentation�

A�� Prove

proveG�T� T�� C� C�� U�

means that G can be proven with current assumptions T� resulting in as�
sumptions T�� where Ci is the probability of Ti� and U is the set of remaining
subgoals�

The �rst rule de�ning prove is a special purpose rule for the case where
we have found an explanation� this reports on the answer found�

prove�ans�A��T�T�C�C�� �� ��

ans�A�T�C��

The remaining rules are the real de�nition� that follow a normal pattern
of Prolog meta�interpreters �����

Logic Programming� Abduction and Probability ��

prove�true�T�T�C�C�� �� ��

prove��A�B��T��T��C��C��U� �� ��

prove�A�T��T��C��C���B�U���

prove�B�T��T��C��C��U��

prove�H�T�T�C�C�� ��

hypothesis�H�PH��

member�H�T����

prove�H�T��H�T
�C�C��U� ��

hypothesis�H�PH��

�� �� member�H��T�� makeground��H�H����

nogood�H�H�� ���

C� is C�PH�

addtoPQ�process��H�T
�C��U���

fail�

prove�G�T��T��C��C��U� ��

rul�G�B��

prove�B�T��T��C��C��U��

A�� Rule and disjoint declarations

We specify the rules of our theory using the declaration ruleR� where R is
the form of a Prolog rule� This asserts the rule produced�

rule��H �� B�� �� ��

assert�rul�H�B���

rule�H� ��

assert�rul�H�true���

The disjoint declaration forms nogoods and declares probabilities of hy�
potheses�

�� op� ���� xfx� � ��

disjoint��
��

disjoint��H�P�R
� ��

assert�hypothesis�H�P���

makedisjoint�H�R��

disjoint�R��

Logic Programming� Abduction and Probability ��

makedisjoint���
��

makedisjoint�H��H� � � R
� ��

assert�nogood�H�H����

assert�nogood�H��H���

makedisjoint�H�R��

A�� Explaining

To �nd an explanation for a subgoal G we execute explainG�� This creates
a list of solved explanations and the probability mass found in 	done
�� and
creates an empty priority queue�

explain�G� ��

assert�done��
�����

initQ�

ex��G�ans�G����
������

exG�D�C� tries to prove G with assumptions D such that probability
of D is C� If G cannot be proven� a partial proof is taken from the priority
queue and restarted� This means that exG�D�C� succeeds if there is some
proof that succeeds�

ex�G�D�C� ��

prove�G�D��C��true��

ex���� ��

removefromPQ�process�D�C�U�����

ex�U�D�C��

We can report the explanations found� the estimates of the prior proba�
bility of the hypothesis� etc� by de�ning ansG�D�C�� which means that we
have found an explanation D of G with probability C�

ans�G��
�� ��

writeln��G�� is a theorem��
����

ans�G�D�C� ��

allgood�D��

qmass�QM��

retract�done�Done�DC���

DC� is DC�C�

Logic Programming� Abduction and Probability ��

assert�done��expl�G�D�C��Done
�DC����

TC is DC� � QM�

writeln���Probability of ��G�

� � ���DC������TC��
�
��

Pr� is C � TC�

Pr� is C � DC��

writeln���Explanation� ��D
��

writeln���Prior � ��C
��

writeln���Posterior � ���Pr������Pr���
�
��

more is a way to ask for more answers� It will take the top priority partial
proof and continue with it�

more �� ex�fail����

A�� Auxiliary relations used

The following relations were also used� They can be divided into those for
managing the priority queue� and those for managing the nogoods�

We assume that there is a global priority queue into which one can put
formulae with an associated cost and from which one can extract the least
cost formulae� We assume that the priority queue persists over failure of
subgoals� It can thus be implemented by asserting into a Prolog database�
but cannot be implemented by carrying it around as an extra argument in a
meta�interpreter ����� for example� We would like both insertion and removal
from the priority queue to be carried out in log n time where n is the number
of elements of the priority queue� Thus we cannot implement it by having the
queue asserted into a Prolog database if the asserting and retracting takes
time proportional to the size of the objects asserted or retracted which it
seems to in the implementations we have experimented with��

Four operations are de�ned�

initQ

initialises the queue to be the empty queue� with zero queue mass�

add to PQprocessD�C�U��

Logic Programming� Abduction and Probability ��

adds assumption set D� with probability C and remaining subgoals U to the
priority queue� Adds C to the queue mass�

remove from PQprocessD�C�U��

if the priority queue is not empty� extracts the element with highest prob�
ability highest value of C� from the priority queue and reduces the queue
mass by C� remove from PQ fails if the priority queue is empty�

qmassM�

returns the sum of the probabilities of elements of the queue�
We assume the relation for handling nogoods�

allgoodL�

fails if L has a subset that has been declared nogood�

Acknowledgements

Thanks to Andrew Csinger� Keiji Kanazawa and Michael Horsch for valu�
able comments on this paper� This research was supported under NSERC
grant OGPOO������ and under Project B� of the Institute for Robotics and
Intelligent Systems�

References

��� K� R� Apt and M� Bezem� Acyclic programs� New Generation Comput�

ing� �������������� �����

��� M� Boddy and T� Dean� Solving time�dependent planning problems�
In Proc� ��th International Joint Conf� on Arti�cial Intelligence� pages
�������� Detroit� MI� August �����

��� E� Charniak and S� E� Shimony� Probabilistic semantics for cost based
abduction� In Proc� �th National Conference on Arti�cial Intelligence�
pages �������� Boston� July �����

Logic Programming� Abduction and Probability ��

��� K� L� Clark� Negation as failure� In H� Gallaire and J� Minker� editors�
Logic and Databases� pages �������� Plenum Press� New York� �����

��� L� Console� D� Theseider Dupre� and P� Torasso� On the relationship
between abduction and deduction� Journal of Logic and Computation�
������������ �����

��� P� T� Cox and T� Pietrzykowski� General diagnosis by abductive infer�
ence� Technical Report CS����� Computer Science� Technical University
of Nove Scotia� Halifax� April �����

��� B� D�Ambrosio� Real�time value�driven diagnosis� In Proc� Third Inter�

national Workshop on the Principles of Diagnosis� pages ������ Rosario�
Washington� October �����

��� J� de Kleer and B� C� Williams� Diagnosis with behavioral modes� In
Proc� ��th International Joint Conf� on Arti�cial Intelligence� pages
���������� Detroit� August �����

��� J� J� Finger and M� R� Genesereth� Residue� A deductive approach to
design synthesis� Technical Report STAN�CS��������� Department of
Computer Science� Stanford University� Stanford� Cal�� �����

���� R� Goebel� K� Furukawa� and D� Poole� Using de�nite clauses and in�
tegrity constraints as the basis for a theory formation approach to di�
agnostic reasoning� In E� Shapiro� editor� Proc� Third International

Conference on Logic Programming� pages �������� London� July �����

���� K� E� Korf� Depth��rst iterative deepening� an optimal admissable tree
search� Arti�cial Intelligence� ������������ September �����

���� J� W� Lloyd� Foundations of Logic Programming� Symbolic Computation
Series� Springer�Verlag� Berlin� second edition� �����

���� L� Naish� Negation and Control in Prolog� Lecture Notes in Computer
Science ���� Springer Verlag� �����

���� J� Pearl� Heuristics� Addison�Wesley� Reading� MA� �����

���� J� Pearl� Probabilistic Reasoning in Intelligent Systems� Networks of

Plausible Inference� Morgan Kaufmann� San Mateo� CA� �����

Logic Programming� Abduction and Probability ��

���� F� C� N� Pereira and S� M� Shieber� Prolog and Natural�Language Anal�

ysis� Center for the Study of Language and Information� �����

���� D� A� Plaisted� The occur�check problem in Prolog� New Generation

Computing� ���������� �����

���� D� Poole� A logical framework for default reasoning� Arti�cial Intelli�

gence� ����������� �����

���� D� Poole� Representing knowledge for logic�based diagnosis� In In�

ternational Conference on Fifth Generation Computing Systems� pages
���������� Tokyo� Japan� November �����

���� D� Poole� Compiling a default reasoning system into Prolog� New Gen�

eration Computing Journal� ��������� �����

���� D� Poole� Representing Bayesian networks within probabilistic Horn ab�
duction� In Proc� Seventh Conf� on Uncertainty in Arti�cial Intelligence�
pages �������� Los Angeles� July �����

���� D� Poole� Representing diagnostic knowledge for probabilistic Horn ab�
duction� In Proc� ��th International Joint Conf� on Arti�cial Intelli�

gence� pages ���������� Sydney� August �����

���� D� Poole� Probabilistic Horn abduction and Bayesian networks� Techni�
cal Report ������ Department of Computer Science� University of British
Columbia� August ����� To appear� Arti�cial Intelligence �����

���� D� Poole� Search for computing posterior probabilities in Bayesian net�
works� Technical Report ������ Department of Computer Science� Uni�
versity of British Columbia� September �����

���� D� Poole� R� Goebel� and R� Aleliunas� Theorist� A logical reasoning sys�
tem for defaults and diagnosis� In N� Cercone and G� McCalla� editors�
The Knowledge Frontier� Essays in the Representation of Knowledge�
pages �������� Springer�Verlag� New York� NY� �����

���� H� E� Pople� Jr� On the mechanization of abductive logic� In Proc�

�rd International Joint Conf� on Arti�cial Intelligence� pages ��������
Stanford� August �����

Logic Programming� Abduction and Probability ��

���� R� Reiter and J� de Kleer� Foundations of assumption�based truth main�
tenance systems� preliminary report� In Proc� �th National Conference

on Arti�cial Intelligence� pages �������� Seattle� July �����

���� A� Sattar and R� Goebel� Using crucial literals to select better theories�
Computational Intelligence� ���������� February �����

���� M� Shanahan� Prediction is deduction� but explanation is abduction�
In Proc� ��th International Joint Conf� on Arti�cial Intelligence� pages
���������� Detroit� Mich�� August �����

���� L� Sterling and E� Shapiro� The Art of Prolog� MIT Press� Cambridge�
MA� �����

���� M� E� Stickel� A Prolog�like inference system for computing minimum�
cost abductive explanations in natural language interpretations� Tech�
nical Note ���� SRI International� Menlo Park� CA� September �����

