First-order probabilistic inference

David Poole

University of British Columbia

Overview

> Simple representation: parametrized belief networks. Means grounding.
$>$ Inference: combine variable elimination and unification
> One step of first-order variable elimination corresponds to an unbounded number of VE steps.
$>$ Allows for new queries, for example queries that depend on population size.

Bayesians

$>$ Probability is a measure of belief.
> All of the individuals about which we have the same information have the same probability.
$>$ Idea: share probability tables both initially and during inference.

Background: Belief (Bayesian) networks

$>$ Totally order the variables of interest: X_{1}, \ldots, X_{n}
$>$ Theorem of probability theory (chain rule):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \cdots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

$>$ The parents of $X_{i} \pi_{i} \subseteq X_{1}, \ldots, X_{i-1}$ such that

$$
P\left(X_{i} \mid \pi_{i}\right)=P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

$>\operatorname{So} P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)$
Belief network nodes are variables, arcs from parents

Background: variable elimination

To compute the probability of a variable X given evidence $\bar{Z}=\bar{e}:$

$$
P(X \mid \bar{Z}=\bar{e})=\frac{P(X \wedge \bar{Z}=\bar{e})}{P(\bar{Z}=\bar{e})}
$$

Suppose the other variables are Y_{1}, \ldots, Y_{m} :

$$
\begin{aligned}
& P(X \wedge \bar{Z}) \\
& \quad=\sum_{Y_{m}} \cdots \sum_{Y_{1}} P\left(X_{1}, \ldots, X_{n}\right) \\
& \quad=\sum_{Y_{m}} \cdots \sum_{Y_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)
\end{aligned}
$$

Eliminating a variable

$>$ to compute $A B+A C$ efficiently, distribute out A : $A(B+C)$.
to compute

$$
\sum_{Y_{j}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)
$$

distribute out those factors that don't involve Y_{j}.
Closely related to nonserial dynamic programming [Bertelè \& Brioschi, 1972]

Variable Elimination Example

$\left.\begin{array}{l}P(A) \\ P(B \mid A)\end{array}\right\} \xrightarrow{\operatorname{elim} A} f_{1}(B), ~$
$P(C)$
$P(D \mid B C)$
$\operatorname{elim} C$ $P(E \mid C)$
$P(F \mid D)$
$P(G \mid F E)$
$P(H \mid G)\} \xrightarrow{\text { obs } H} f_{3}(G)$
$P(I \mid G)\} \xrightarrow{\operatorname{elim} I} f_{4}(G)$

Variable Elimination: basic operations

> conditioning on observations (local to each factor)
$>$ multiplying factors
$>$ summing a variable from a factor

Parametrized belief networks

> Allow random variables to be parametrized. height (X)
> Parameters correspond to logical variables.
$>$ Each parameter is typed with a population. $\quad X$: person
$>$ Each population has a size. \mid person $\mid=1000000$
> Parametrized belief network means its grounding: for each combination of parameters, an instance of each random variable for each member of parameters' population. height $\left(p_{1}\right) \ldots \operatorname{light}\left(p_{1000000}\right)$
> Instances are independent (but can have common ancestors and descendents).

Example parametrized belief network

$\forall X P($ car_colour $(X)=$ pink \mid hair_colour $(X)=$ pink $)=0.1$ $\forall X P($ hair_colour $(X)=$ pink|town_conservative $)=0.001$.

First-order probabilistic inference

Parametrized Belief Network

 ground VE
FOVE

Parametrized Posterior ground

Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground steps with one step:

$$
\underbrace{f(X, Z) \vee p(X, a) \quad \neg p(b, Y) \vee g(Y, W)}_{f(b, Z) \vee g(a, W)}
$$

Substitution $\{X / b, Y / a\}$ is the most general unifier of $p(X, a)$ and $p(b, Y)$.

Variable Elimination and Unification

> Multiplying parametrized factors:

$$
\underbrace{[f(X, Z), p(X, a)] \quad \times \quad[p(b, Y), g(Y, W)]}_{[f(b, Z), p(b, a), g(a, W)]}
$$

Doesn't quite work because the first parametrized factor can't be used for $X=b$ but can be used for other instances of X.
> Intuitively, we want to add the constraint $X \neq b$ to $[f(X, Z), p(X, a)]$ after the above multiplication.

Parametric Factors

A parametric factor is a triple $\langle C, V, t\rangle$ where
$>C$ is a set of inequality constraints on parameters,
$>V$ is a set of parametrized random variables
$>t$ is a table representing a factor from the random variables to the non-negative reals.
$\left\{\{X \neq\right.$ sue $\},\{$ hair_col (X), cons $\}, \begin{array}{|ll|l|}\hline \text { hair_col } & \text { cons } & \text { Val } \\ \hline \text { purple } & \text { yes } & 0.001 \\ \text { purple } & \text { no } & 0.01 \\ \hline & \cdots & \\ \hline\end{array}$

Splitting

Instead of applying substitutions to parametric factors, we split the parametric factors on the substitution.

A split of $\langle C, V, t\rangle$ on $X=\gamma$, results in parametric factors:

$$
\begin{aligned}
& \langle C[X / \gamma], V[X / \gamma], t\rangle \\
& \langle\{X \neq \gamma\} \cup C, V, t\rangle
\end{aligned}
$$

where $V[X / \gamma]$ is V with γ substituted for X.

Splitting on a substitution

> Splitting on a substitution, means splitting on each equality in the substitution.
> Different orders of splitting give the same final result, but may give different residuals.

Example: Split

$$
\left\langle\left\},\{f o o(X, Y, Z)\}, t_{1}\right\rangle\right.
$$

on $\{X=Z, Y=b\}$ results in

$$
\begin{aligned}
& \left\langle\left\},\{f o o(X, b, X)\}, t_{1}\right\rangle\right. \\
& \left\langle\{X \neq Z\},\{f o o(X, Y, Z)\}, t_{1}\right\rangle \\
& \left\langle\{Y \neq b\},\{\operatorname{foo}(X, Y, X)\}, t_{1}\right\rangle
\end{aligned}
$$

Multiplying Parametric Factors

Suppose we were to eliminate p and multiply the two parametric factors:

$$
\begin{aligned}
& \left\langle\left\},\{p(X, a), q(Y, c), s(X, Y)\}, t_{1}\right\rangle\right. \\
& \left\langle\{W \neq d\},\{p(b, Z), q(W, T), r(W, T)\}, t_{2}\right\rangle
\end{aligned}
$$

$>$ If we grounded these, then did VE, some instances of these would be multiplied and some wouldn't.
$>$ We unify $p(X, a)$ and $p(b, Z)$ resulting in the substitution $\theta=\{X / b, Z / a\}$.
> Unification finds the most general instances that need to be multiplied.

Splitting when Multiplying I

We are multiplying the two parametric factors:

$$
\begin{align*}
& \left\langle\left\},\{p(X, a), q(Y, c), s(X, Y)\}, t_{1}\right\rangle\right. \tag{1}\\
& \left\langle\{W \neq d\},\{p(b, Z), q(W, T), r(W, T)\}, t_{2}\right\rangle \tag{2}
\end{align*}
$$

We split parametric factor (1) on $\theta=\{X / b, Z / a\}$:

$$
\begin{align*}
& \left\langle\left\},\{p(b, a), q(Y, c), s(b, Y)\}, t_{1}\right\rangle\right. \tag{3}\\
& \left\langle\{X \neq b\},\{p(X, a), q(Y, c), s(X, Y)\}, t_{1}\right\rangle \tag{4}
\end{align*}
$$

We can split (2) on θ resulting in:

$$
\begin{align*}
& \left\langle\{W \neq d\},\{p(b, a), q(W, T), r(W, T)\}, t_{2}\right\rangle \tag{5}\\
& \left\langle\{Z \neq a, W \neq d\},\{p(b, Z), q(W, T), r(W, T)\}, t_{2}\right\rangle \tag{6}
\end{align*}
$$

Splitting when Multiplying II

When we are multiplying:

$$
\begin{aligned}
& \left\langle\left\},\{p(b, a), q(Y, c), s(b, Y)\}, t_{1}\right\rangle\right. \\
& \left\langle\{W \neq d\},\{p(b, a), q(W, T), r(W, T)\}, t_{2}\right\rangle
\end{aligned}
$$

- All ground instances would need to be multiplied.

Not all instances have the same number of variables: some will have two different q instances, and some have one.
> We need to split again on the most general unifier of $q(Y, c)$ and $q(W, T)$.

Summing out variables

If we are not removing a parameter, we sum out as normal. E.g., summing out p :

$$
\langle\},\{p(X), q(X)\}, t[p, q]\rangle
$$

If we are removing a parameter, we must take to the power of the effective population size. E.g., summing out p :

$$
\langle\{Y \neq a\},\{p(X, Y), q(X)\}, t[p, q]\rangle
$$

> Other functions such as noisy-or, you need to take into account the population size.

Removing a parameter when summing

Eliminate interested:

$\left\langle\left\},\{\right.\right.$ boring, interested $\left.(X)\}, t_{1}\right\rangle$
$\left\langle\left\},\{\right.\right.$ interested $\left.(X)\}, t_{2}\right\rangle$
\downarrow
$\left\langle\left\},\{\right.\right.$ boring $\left.\},\left(t_{1} \times t_{2}\right)^{100}\right\rangle$
\mid people $\mid=100$
observe no questions

Existential Observations

Suppose we observe:
$>$ Joes has purple hair, a purple car, and has big feet.

- A person with purple hair, a purple car, and who is very tall was seen committing a crime.

What is the probability that Joe is guilty?

Background parametrized belief network

Observing information about Joe

Observing Joe and the crime

We end up with parametric Factors:
$\left\langle\left\},\{\right.\right.$ guilty $(j o e)$, descn(joe), conservativeness $\left.\}, t_{1}\right\rangle$
$\left\langle\{X \neq j o e\},\{\operatorname{descn}(X)\right.$, conservativeness $\left.\}, t_{2}\right\rangle$
$\left\langle\left\},\{\operatorname{descn}(X)\right.\right.$, witness $\left.\}, t_{3}\right\rangle$
$\left\langle\left\},\{\right.\right.$ conservativeness $\left.\}, t_{4}\right\rangle$
We eliminate $\operatorname{descn}(X)$:
$\left\langle\left\},\{\right.\right.$ guilty (joe), witness, conservativeness $\left.\}, t_{5}\right\rangle$
We sum out conservativeness and condition on witness:
$\left\langle\left\},\{\right.\right.$ guilty $($ joe $\left.)\}, t_{6}\right\rangle$

Guilty as a function of population

Conclusions

$>$ We combine variable elimination + unification.
$>$ One step of first-order variable elimination corresponds to many steps in ground representation.
$>$ We can condition on existential and universal observations.

