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[ Simple representation: parametrized belief networks.
Means grounding.

L1 Inference: combine variable elimination and unification

L] One step of first-order variable elimination
corresponds to an unbounded number of VE steps.

Ll Allowsfor new queries, for example queries that
depend on population size.
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1 Probability is a measure of belief.

L1 All of the individuals about which we have the same
Information have the same probability.

L] Idea: share probability tables both initially and
during inference.
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Background: Belief (Bayesian) networks

L] Totally order the variables of interest: Xy, ..., X,
1 Theorem of probability theory (chain rule):
= [[LiPXilXe, ..., Xi—1)

[l The parentsof Xi mj € Xy, ..., X{_1 such that
P(Xi|mi) = P(Xi|Xq, ..., Xi—1)

1 SoP(Xy, ..., %) =[], POXi|mi)

Belief network nodes are variables, arcs from parents

[]
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Background: variable elimination

To compute the probability of avariable X given evidence
Z==¢
PXAZ =8
P(Z =9
Suppose the other variablesare Y1, ..., Y
P(X A 2Z)

=§S“§:mm“”mﬂ
Y1

Ym

= Z--'ZHP(XiIJTi)

Ym Yr i=1

PXX|Z=9 =
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Eliminating avariable

to compute AB + AC efficiently, distribute out A:
AB + C).

to compute
n
> [Pt
Y i=1
distribute out those factors that don’t involve ;.

Closely related to nonserial dynamic programming
[Bertele & Brioschi, 1972]
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Variable Elimination Example

P(A) } dimA o
P(B|A)
P(C) |
P(D|BC) eim C f2(BDE)
P(E|C)
P(F|D)
P(G|FE)
obs H

PH|G) } — f3(G)
P(1G) }e"—m>' £4(G)
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Variable Elimination:; basic operations

| conditioning on observations (local to each factor)
L1 multiplying factors

1 summing avariable from a factor
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Parametrized belief networks
Allow random variablesto be parametrized. height(X)

Parameters correspond to logical variables. X
Each parameter istyped with apopulation. X : person
Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: for
each combination of parameters, an instance of each
random variable for each member of parameters

population. height(p1) . . . height (p1000000)

| nstances are independent (but can have common
ancestors and descendents).
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Example parametrized belief network

fown conservatlven>

/7
aG

@r_ col our)

X:person

VX P(car_colour (X)=pink|hair_colour (X)=pink) =

VX P(hair_colour (X)=pink|town conservative)

= 0.001.
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First-order probabilistic inference

Parametrized |:()L)Parametrized
Belief Network Posterior
ground ground

. VE .
Belief Network ————————Jp= Posterior
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Theorem Proving and Unification

In 1965, Robinson showed how unification allows many
ground steps with one step:

f(X,Z) v pX, a) —p(b, Y) v g(Y, W)

f(b, 2) \7 g(a, W)

Substitution {X/b, Y /a} isthe most general unifier of p(X, a)
and p(b, Y).
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Variable Elimination and Unification

L1 Multiplying parametrized factors:
[f(X,2),pX, @] x  [pb,Y),g(Y, W)]

-

[f (b, Z2), p(b, @), g(a, W)]

Doesn't quite work because the first parametrized factor
can't be used for X = b but can be used for other
Instances of X.

L] Intuitively, we want to add the constraint X # b to
[f (X, Z), p(X, a)] after the above multiplication.
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Parametric Factors

A parametric factor isatriple (C, V, t) where
| Clisaset of ineguality constraints on parameters,

|V isaset of parametrized random variables

| tisatable representing afactor from the random
variables to the non-negative reals.

hair_col cons| Val

purple yes | 0.001
purple  no |0.01

<{X +~ sue}, {hair_col (X), cons},
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Instead of applying substitutions to parametric factors, we
split the parametric factors on the substitution.

A split of (C,V, 1) on X = y, results in parametric factors:

(CIX/y1, VIX/y], t)
(X £#y}UC,V,1) <— residual

where V[X/y]isV with y substituted for X.
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Splitting on a substitution

L] Splitting on a substitution, means splitting on each
equality in the substitution.

L] Different orders of splitting give the same final result, but
may give different residuals.

[1 Example: Split
{{}, {foo(X, Y, 2)}, ta)
on{X =27,Y = b} resultsin
({}, {foo(X, b, X)}, ta)
({X # Z}, {foo(X, Y, 2)}, t1)
({Y # b}, {foo(X, Y, X)}, t1)
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Multiplying Parametric Factors

Suppose we were to eliminate p and multiply the two
parametric factors:

({1 Ap(X, @), q(Y, ©), s(X, Y)}, t1)
(W = d}, {p(b, 2), a(W, T), r(W, T)}, t2)

L1 If we grounded these, then did VE, some instances of
these would be multiplied and some wouldn't.

L1 Weunify p(X, a) and p(b, Z) resulting in the substitution
9 = {X/b, Z/al.

L] Unification finds the most general instances that need to
be multiplied.

[]
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Splitting when Multiplying |

We are multiplying the two parametric factors:

({}, {p(X, @), q(Y, ©), (X, )}, ta) (1)

{W # d}, {p(b, 2), q(W, T), r (W, T)}, t2) (2)
We split parametric factor (1) on 6 = {X/b, Z/a}:

{}, {p(b, &), q(Y, ©), s(b, Y)}, ta) (3)

({X # b}, {p(X, &), q(Y, ©), s(X, Y)}, t1) (4)
We can split (2) on 6 resulting in:

({W # d}, {p(b, @), q(W, T), r(W, T)}, t2) (5)

({Z #a, W = d}, {p(b, Z), q(W, T), r(W, T)}, t2) (6)
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Splitting when Multiplying 11

When we are multiplying:
{}, {p(b, @), q(¥, ©), s(b, Y)}, ta)
{W #£ d}, {p(b, @), q(W, T), r(W, )}, t2)
L1 All ground instances would need to be multiplied.

L] Not al instances have the same number of variables:
some will have two different g instances, and some have

Oone.

L] We need to split again on the most general unifier of
qcY, ©) and q(W, T).
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Summing out variables

L1 If we are not removing a parameter, we sum out as
normal. E.g., summing out p:

({3 AP(X), a(X)}, tip, al)

L1 If we are removing a parameter, we must take to the
power of the effective population size. E.g., summing
out p:

{Y # a}, (p(X, Y), q(X)}, t[p, al)

L] Other functions such as noisy-or, you need to take into
account the population size.
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Removing a parameter when summing

@e!ed(D Eliminate interested:
({}, {boring, interested(X)}, t1)
l ({}, {interested (X)}, t2)
Cask_question(X) > !
X:person ({3, {boring}, (t1 x t2)1%)
|people] = 100

observe no questions
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Existential Observations

Suppose we observe:

1 Joes has purple hair, apurple car, and has big feet.

L1 A person with purple hair, a purple car, and who is very
tall was seen committing a crime.

What is the probability that Joeis guilty?
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Background parametrized belief network

Cown conservatlven>

/;-
)

Ccar_colour (X) >

X:person
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Observing information about Joe

fown conservatlveD

@ 2

/ e

halr coIour(X / !

X:person, X#joe

L
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Observing Joe and the crime

fown_conservativeness >
\

hair_colour (X

Cquilty(>
Cheight(Q>

’
Cdescn(9 >

descn(X)

X:person, X#joe
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We end up with parametric Factors:

({}, {gquilty(joe), descn(joe), conservativeness}, t)
({X # Joe}, {descn(X), conservativeness}, to)
({}, {descn(X), witness}, t3)
({1, {conservativeness}, ts)
We eliminate descn(X):
({}, {quilty(joe), witness, conservativeness}, ts)

We sum out conservativeness and condition on withess;

({}, {quilty(joe)}, te)

L
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Guilty as afunction of population

207 |
@)

1 10 100 1000 10000 100000
population
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Conclusions

[ 1 We combine variable elimination + unification.

L] One step of first-order variable elimination

corresponds to many steps in ground representation.

[ | We can condition on existential and universal
observations.
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