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Overview

➤ Simple representation: parametrized belief networks.

Means grounding.

➤ Inference: combine variable elimination and unification

➣ One step of first-order variable elimination

corresponds to an unbounded number of VE steps.

➣ Allows for new queries, for example queries that

depend on population size.

© David Poole 2003

☞

☞

http://www.cs.ubc.ca/spider/poole/


IJCAI 2003 Page 3

Bayesians

➤ Probability is a measure of belief.

➤ All of the individuals about which we have the same

information have the same probability.

➣ Idea: share probability tables both initially and

during inference.
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Background: Belief (Bayesian) networks

➤ Totally order the variables of interest: X1, . . . , Xn

➤ Theorem of probability theory (chain rule):

P(X1, . . . , Xn) = P(X1)P(X2|X1) · · ·P(Xn|X1, . . . , Xn−1)

= ∏n
i=1 P(Xi|X1, . . . , Xi−1)

➤ The parents of Xi πi ⊆ X1, . . . , Xi−1 such that

P(Xi|πi) = P(Xi|X1, . . . , Xi−1)

➤ So P(X1, . . . , Xn) =∏n
i=1 P(Xi|πi)

➥ Belief network nodes are variables, arcs from parents
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Background: variable elimination
To compute the probability of a variable X given evidence

Z = e:

P(X|Z = e) = P(X ∧ Z = e)

P(Z = e)

Suppose the other variables are Y1, . . . , Ym:

P(X ∧ Z)

=
∑
Ym

· · ·
∑
Y1

P(X1, . . . , Xn)

=
∑
Ym

· · ·
∑
Y1

n∏
i=1

P(Xi|πi)
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Eliminating a variable

➤ to compute AB+ AC efficiently, distribute out A:

A(B+ C).

➤ to compute∑
Yj

n∏
i=1

P(Xi|πi)

distribute out those factors that don’t involve Yj.

➤ Closely related to nonserial dynamic programming

[Bertelè & Brioschi, 1972]
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Variable Elimination Example

A

B
C

D

E

F

G

H I

P(A)

P(B|A)


 elim A−→ f1(B)

P(C)

P(D|BC)

P(E|C)




elim C−→ f2(BDE)

P(F|D)

P(G|FE)

P(H|G)

} obs H−→ f3(G)

P(I|G)

} elim I−→ f4(G)
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Variable Elimination: basic operations

➤ conditioning on observations (local to each factor)

➤ multiplying factors

➤ summing a variable from a factor

© David Poole 2003

☞

☞

http://www.cs.ubc.ca/spider/poole/


IJCAI 2003 Page 9

Parametrized belief networks
➤ Allow random variables to be parametrized. height(X)

➤ Parameters correspond to logical variables. X

➤ Each parameter is typed with a population. X : person

➤ Each population has a size. |person| = 1000000

➤ Parametrized belief network means its grounding: for
each combination of parameters, an instance of each
random variable for each member of parameters’
population. height(p1) . . . height(p1000000)

➤ Instances are independent (but can have common
ancestors and descendents).
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Example parametrized belief network

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person

∀X P(car_colour(X)=pink|hair_colour(X)=pink) = 0.1
∀X P(hair_colour(X)=pink|town_conservative) = 0.001.
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First-order probabilistic inference

Parametrized
Belief Network

Belief Network

Parametrized
Posterior

Posterior

FOVE

VE

ground ground
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Theorem Proving and Unification

In 1965, Robinson showed how unification allows many

ground steps with one step:

f (X, Z) ∨ p(X, a) ¬p(b, Y) ∨ g(Y , W)︸ ︷︷ ︸
f (b, Z) ∨ g(a, W)

Substitution {X/b, Y/a} is the most general unifier of p(X, a)

and p(b, Y).
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Variable Elimination and Unification

➤ Multiplying parametrized factors:

[f (X, Z), p(X, a)] × [p(b, Y), g(Y , W)]︸ ︷︷ ︸
[f (b, Z), p(b, a), g(a, W)]

Doesn’t quite work because the first parametrized factor

can’t be used for X = b but can be used for other

instances of X.

➤ Intuitively, we want to add the constraint X �= b to

[f (X, Z), p(X, a)] after the above multiplication.
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Parametric Factors
A parametric factor is a triple 〈C, V , t〉 where

➤ C is a set of inequality constraints on parameters,

➤ V is a set of parametrized random variables

➤ t is a table representing a factor from the random
variables to the non-negative reals.

〈
{X �= sue}, {hair_col(X), cons},

hair_col cons Val

purple yes 0.001

purple no 0.01

· · ·

〉
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Splitting

Instead of applying substitutions to parametric factors, we

split the parametric factors on the substitution.

A split of 〈C, V , t〉 on X = γ , results in parametric factors:

〈C[X/γ ], V [X/γ ], t〉
〈{X �= γ } ∪ C, V , t〉 ←− residual

where V [X/γ ] is V with γ substituted for X.
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Splitting on a substitution
➤ Splitting on a substitution, means splitting on each

equality in the substitution.

➤ Different orders of splitting give the same final result, but
may give different residuals.

➤ Example: Split

〈{}, {foo(X, Y , Z)}, t1〉
on {X = Z, Y = b} results in

〈{}, {foo(X, b, X)}, t1〉
〈{X �= Z}, {foo(X, Y , Z)}, t1〉
〈{Y �= b}, {foo(X, Y , X)}, t1〉
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Multiplying Parametric Factors
Suppose we were to eliminate p and multiply the two
parametric factors:

〈{}, {p(X, a), q(Y , c), s(X, Y)}, t1〉
〈{W �= d}, {p(b, Z), q(W , T), r(W , T)}, t2〉

➤ If we grounded these, then did VE, some instances of
these would be multiplied and some wouldn’t.

➤ We unify p(X, a) and p(b, Z) resulting in the substitution
θ = {X/b, Z/a}.

➤ Unification finds the most general instances that need to
be multiplied.
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Splitting when Multiplying I
We are multiplying the two parametric factors:

〈{}, {p(X, a), q(Y , c), s(X, Y)}, t1〉 (1)

〈{W �= d}, {p(b, Z), q(W , T), r(W , T)}, t2〉 (2)

We split parametric factor (1) on θ = {X/b, Z/a}:
〈{}, {p(b, a), q(Y , c), s(b, Y)}, t1〉 (3)

〈{X �= b}, {p(X, a), q(Y , c), s(X, Y)}, t1〉 (4)

We can split (2) on θ resulting in:

〈{W �= d}, {p(b, a), q(W , T), r(W , T)}, t2〉 (5)

〈{Z �= a, W �= d}, {p(b, Z), q(W , T), r(W , T)}, t2〉 (6)
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Splitting when Multiplying II

When we are multiplying:

〈{}, {p(b, a), q(Y , c), s(b, Y)}, t1〉
〈{W �= d}, {p(b, a), q(W , T), r(W , T)}, t2〉

➤ All ground instances would need to be multiplied.

➤ Not all instances have the same number of variables:

some will have two different q instances, and some have

one.

➤ We need to split again on the most general unifier of

q(Y , c) and q(W , T).
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Summing out variables

➤ If we are not removing a parameter, we sum out as

normal. E.g., summing out p:

〈{}, {p(X), q(X)}, t[p, q]〉
➤ If we are removing a parameter, we must take to the

power of the effective population size. E.g., summing

out p:

〈{Y �= a}, {p(X, Y), q(X)}, t[p, q]〉
➤ Other functions such as noisy-or, you need to take into

account the population size.
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Removing a parameter when summing

interested(X)

ask_question(X)

boring

X:person

|people| = 100

observe no questions

Eliminate interested:

〈{}, {boring, interested(X)}, t1〉
〈{}, {interested(X)}, t2〉

↓〈{}, {boring}, (t1 × t2)100
〉
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Existential Observations

Suppose we observe:

➤ Joes has purple hair, a purple car, and has big feet.

➤ A person with purple hair, a purple car, and who is very

tall was seen committing a crime.

What is the probability that Joe is guilty?
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Background parametrized belief network

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person
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Observing information about Joe

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)
guilty(X)

town_conservativeness

X:person, X=joe

sex(joe)

height(joe)

shoe_size(joe)

hair_colour(joe)

car_colour(joe) guilty(joe)
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Observing Joe and the crime

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person, X=joe

sex(joe)

height(joe)

shoe_size(joe)

hair_colour(joe)

car_colour(joe)

guilty(joe)

descn(X)

descn(joe)

witness
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Last Steps
We end up with parametric Factors:

〈{}, {guilty(joe), descn(joe), conservativeness}, t1〉
〈{X �= joe}, {descn(X), conservativeness}, t2〉
〈{}, {descn(X), witness}, t3〉
〈{}, {conservativeness}, t4〉

We eliminate descn(X):

〈{}, {guilty(joe), witness, conservativeness}, t5〉
We sum out conservativeness and condition on witness:

〈{}, {guilty(joe)}, t6〉
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Guilty as a function of population
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Conclusions

➤ We combine variable elimination + unification.

➣ One step of first-order variable elimination

corresponds to many steps in ground representation.

➣ We can condition on existential and universal

observations.
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