
In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

Acknowledgements

This work was supported by Institute for Robotics and In-
telligent Systems, Project IC-7 and Natural Sciences and
Engineering Research Council of Canada Operating Grant
OGPOO44121. Thanks to Craig Boutilier for valuable dis-
cussions and for comments on earlier versions of this pa-
per.

References

[Apt and Bezem, 1991] K. R. Apt and M. Bezem. Acyclic
programs. New Generation Computing, 9(3-4):335–363,
1991.

[Ballard, 1983] B. W. Ballard. The �-minimax search pro-
cedure for trees containing chance nodes. Artificial In-
telligence, 21(3):327–350, 1983.

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and
M. Goldszmidt. Exploiting structure in policy construc-
tion. In Proc. 14th International Joint Conf. on Artificial
Intelligence, to appear, Montreal, Quebec, 1995.

[Cassandra et al., 1994] A. R. Cassandra, L. Pack Kae-
bling, and M. L. Littman. Acting optimally in partially
observable stochastic domains. In Proc. 12th National
Conference on Artificial Intelligence, pages 1023–1028,
Seattle, 1994.

[Cooper, 1988] G. F. Cooper. A method for using belief
netwoks as influence diagrams. In Proc. Fourth Confer-
ence on Uncertainty in Artificial Intelligence, pages 55–
63, Minnesota, Minneapolis, 1988.

[Howard and Matheson, 1981] R. A. Howard and J. E.
Matheson. Influence diagrams. In R. A. Howard and
J. Matheson, editors, The Principles and Applications of
Decision Analysis, pages 720–762. Strategic Decisions
Group, CA, 1981.

[Monahan, 1982] G. E. Monahan. A survey of partially
observable Markov decision processes: Theory, models
and algorithms. Management Science, 28:1–16, 1982.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[Poole, 1993a] D. Poole. Logic programming, abduction
and probability: A top-down anytime algorithm for com-
puting prior and posterior probabilities. New Generation
Computing, 11(3–4):377–400, 1993.

[Poole, 1993b] D. Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1):81–
129, 1993.

[Poole, 1995a] D. Poole. Abducing through negation as
failure: Stable models within the independent choice
logic. Technical Report, Department of Computer
Science, UBC, ftp://ftp.cs.ubc.ca/ftp/local/poole/papers/
abnaf.ps.gz, January 1995.

[Poole, 1995b] D. Poole. Sensing and acting in the
independent choice logic. In Working Notes AAAI
Spring Symposium 1995 — Extending Theories of Ac-
tions: Formal Theory and Practical Applications, ftp://
ftp.cs.ubc.ca/ftp/local/poole/papers/actions.ps.gz, 1995.

[Qi and Poole, 1995] R. Qi and D. Poole. New method
for influence diagram evaluation. Computational Intel-
ligence, 11(3), 1995.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, April
1987.

[Reiter, 1991] R. Reiter. The frame problem in the situa-
tion calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In V. Lifschitz, edi-
tor, Artificial Intelligence and the Mathematical Theory
of Computation: Papers in Honor of John McCarthy,
pages 359–380. Academic Press, San Diego, 1991.

[Shachter and Peot, 1992] R. Shachter and M. A. Peot. De-
cision maiking using probabilistic inference methods. In
Proc. Eighth Conf. on Uncertainty in Artificial Intelli-
gence, pages 276–283, Stanford, CA, 1992.

[Shachter, 1986] R. D. Shachter. Evaluating influence dia-
grams. Operations Research, 34(6):871–882,
November-December 1986.

[Smith et al., 1993] J. E. Smith, S. Holtzman, and J. E.
Matheson. Structuring conditional relationships in in-
fluence diagrams. Operations Research, 41(2):280–297,
1993.

[Zhang et al., 1994] N. L. Zhang, R. Qi, and D. Poole.
A computational theory of decision networks. Inter-
national Journal of Approximate Reasoning, 11(2):83–
158, 1994.



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

procedure expectation�S�:
input: set of observation full pre-policies.
output: set of tuples of the form hdi�K� vi, such that when-
ever K is observed, decision di has (expected) utility v.

while � hdi� ��K� ui � S� hdi� ���K�� u�i � S

such that consistent�� � ��� and � �� ��

select � � � � ��

let � be the element of O such that � � �
replace hdi� ���K�� u�i in S by

the split of hdi� ���K�� u�i on �
end while;
Let

��di� �� S� �

X
hK�ui�hdi���K�ui�S

P �K�� u

X
hK�ui�hdi���K�ui�S

P �K�

expectation�S�

� fhdi� �� ��di� �� S�i � �K�u hdi� ��K� ui � Sg

Figure 5: Computing Expectations

The general algorithm is now to compute the policy via:

S� �� fhdi� fg� fK � expl�utility�u�� � di � Kg� ui

� di � dg�

S� �� optimize�expectation�expand�S����

Then S� corresponds to the optimal policy.

5.3 Multiple Decisions

We assume that there is a ‘last’ decision
d � fd�� � � � � dkg � C�, such that all other decisions that
are part of an explanation of utility which contain d are in
��d� (i.e., are ‘observable’). If there is no such decision,
then we cannot optimize the decisions one at a time [Zhang
et al., 1994].

The idea of the algorithm for multiple decisions is the stan-
dard one: we solve the last decision and either replace it
with a deterministic function corresponding to the policy
(by adding the corresponding rules to F), or by replacing
the rules for utility by new rules that give the expected util-
ity for the optimal policy [Zhang et al., 1994].

5.4 Refinements

There are many refinements that can be given to the above
procedure. A few are noteworthy:

1. We want to do subsumption as early as possible. Sub-
sumption can be made as early as the expand proce-
dure. Note that, for those cases where all alternatives
have been subsumed, neither the expectation proce-
dure nor the optimize procedure need to do any split-
ting.

2. We really want to compute the explanations and the
other procedures in a lazy fashion — only expanding
enough to see what can be pruned. We want to prune
early and prune often!

3. Although we have specified expl here as an abstract
procedure, it can be computed top-down (as in [Poole,
1993a]), bottom-up (as in an ATMS), and we are also
exploring exploiting structure in a rule-based version
of clique-tree propagation.

6 Conclusion

This paper presented one step in a combination of logic and
probability.

This paper has proposed a mechanism for reducing the case
analysis of dynamic programming. We have exploited the
rule structure of the ICLDT in order to determine the cases
where some observations are irrelevant.

The use of rule structure (called ‘tree-structure’ there) for
Markov decision processes has been explored by Boutilier
and colleagues [Boutilier et al., 1995]. Their algorithm is
similar to the ‘fully observable’ case of section 5.1. This
paper expands on this to only consider appropriate group-
ings of observations.

Smith et. al [Smith et al., 1993] have explored the use of
tree-like definitions for the conditional probability tables in
influence diagrams. The difference to this work is that we
only have rules plus independent choices — the influence
diagram is just one of the representations we can represent.
The algorithms are also very different, with Smith et. al. us-
ing a variant of Shachter’s algorithm.

This is a part of a project to create a mix of logic and deci-
sion theory, where we can exploit as much of the structure as
possible to gain efficiencies. This paper has only scratched
the surface of the issues. Currently under development (or
under consideration) are rule-based variants (that can ex-
ploit the propositional independence inherent in a rule base)
of common probabilistic algorithms for MDPs [Boutilier et
al., 1995], influence diagrams (this paper), POMDPs and
even a rule-based version of clique-tree propagation.

The representation used here is also of interest in its own
right in providing logical variables that can be used for
dynamic construction of decision networks (as in [Poole,
1993b]), and can be extended into multiple agents [Poole,
1995b].



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

Example 5.5 Continuing our example, we create the pre-
policies for different utilities, some of which are:

hd���� fg� ffd���gg� �i (9)

hd���� fg� ffd���� a�hi�gg� ��i (10)

hd���� fg� ffd���� a�med�gg� 	i

These specify the distinctions that are important to deter-
mine utility.

A basic step is to split pre-policies based on the different
possible values of an observable (i.e., we consider each of
the cases for the values of the observable):

Lemma 5.6 If hd� ��K� ui is a pre-policy, and o � ��d�
then for all hc�K�i � œ�o�, hd� � � fcg�K �K�� ui is a pre-
policy.

We only want to do case analysis with respect to an obser-
vation if it is relevant. The notion of ‘autonomous’ gives a
syntactic criteria for determining if an observation is rele-
vant:

Definition 5.7 If K� and K� are sets of composite choices
then K� and K� are autonomous if 	�� � K� 	�� �
K� 	c� � �� 	c� � �� � �A � C fc�� c�g � A. Thus
they are autonomous if they involve different alternatives.

The following lemma can be easily proved:

Lemma 5.8 If the set of explanations of g� and the set of
explanations of g� are autonomous then g� and g� are inde-
pendent.

We can stop expanding on observations when all other ob-
servations are irrelevant.

Definition 5.9 Pre-policy hdi� ��� ��� ui is observation
full if for every �� � ��d� either �� 
 �� �� fg or for all
hc� ��i � œ����, �� and �� are autonomous.

If pre-policy hd� �� ��� ui is observation full, then the other
observations are irrelevant to decision d in the context of
observation �.

Example 5.10 Continuing example 5.5, partial explana-
tion (9) is observation full: for action d��� all observations
are irrelevant as far as the utility is concerned.

Partial explanation (10) is autonomous of
œ�fta�hi�� ta�low�g�and œ�fbs�pos�� bs�neg�g, but is not
autonomous of œ�fas�pos�� as�neg�g�.

Figure 4 given a procedure for expanding a set of pre-
policies to an equivalent set that is observation-full. In the
worst case, the set produced will contain one element for
each element of d and each element of expansion���d��.
In many cases this will be much smaller. This algorithm

procedure expand�S�:

input: set S of pre-policies.

output: set of observation full pre-policies.

1. Select hdi� ��K� ui � S and O � ��d� such that
O 
 � � fg and there is one hc�K�i � œ�O� where
K� and K are not autonomous.
S �� S�fhdi� ��K� uig�fhdi� � � fcg�K �K�� ui �
hc�K�i � œ�O�g.
Go to step 1.

2. If there are no choices in case 1, return S.

Figure 4: Expanding observations to cover all potentially
relevant cases

contains a selection — the algorithm will be correct no mat-
ter which elements (that satisfy the conditions) are selected.
Different selections may change the size of the resulting set
(e.g., of one observation gives more information than an-
other, this observation should be selected first). Also note
that the case analysis we do for the observations is not sym-
metric — one observation may only be relevant for partic-
ular values of other observations.

Example 5.11 Partial explanation (10) needs to be com-
bined with œ�fas�pos�� as�neg�g� resulting in:

hd���� fas�pos�g� ffd���� a�hi�� ta�hi�gg� ��i

hd���� fas�neg�g� ffd���� a�hi�� ta�lo�gg� ��i

These can the be combined with œ�fta�hi�� ta�low�g pro-
ducing:

hd���� fas�pos�� ta�hi�g� ffd���� a�hi�� ta�hi�gg� ��i

hd���� fas�neg�� ta�lo�g� ffd���� a�hi�� ta�lo�gg� ��i

Which are then observation full. For decision d��� value of
bs is irrelevant.

Once we have an observation full set of pre-policies, we can
then compute expected values (of the utility given decisions
and observations), using the algorithm of Figure 5. Com-
puting expected values is complicated by the fact that for a
di the pre-policies involving different utility values may in-
volve a different split on the observations. This algorithm
computes expected utilities for combinations of values of
observables, splitting cases when necessary. This proce-
dure treats the expectation calculation as one big sum; in
any real implementation we would use some of the more
efficient Bayesian network algorithms (such as clique-tree
propagation).

Given the expected utilities of the observables, we essen-
tially have the fully observable case from which we can then
use optimize of Figure 3 to derive the optimal policy.



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

procedure optimize�S�:

input: set S of tuples of the form hdi� �� ui, such that
whenever composite choice � is true, decision di has
utility u.

output: set S of tuples of the form hdi� �� ui, such that
whenever � is true, decision di has utility u, and di is an
optimal decision when � is true.

1. Remove all dominated explanations from S. If we
have two elements hdi� �i� uii and hdj � �j � uji in S
where ui � uj and �j � �i, then remove hdi� �i� uii.
If ui � uj and �j � �i then remove either one.
[Whenever �i is true, we know that dj is better than
di, and so we don’t need to consider di.]

2. If there are no dominated elements, and if there are
two elements hdi� �i� vii � S and hdj � �j � vji � S

such that �i � �j is consistent, di �� dj and vi � vj
do the following: Select o � �j � �i. Suppose o is in
observation alternative O. Replace hdi� �i� vii in S by
the split of hdi� �i� vii on O. Go to step 1.

3. If neither case 1 nor case 2 is applicable, return S.

Figure 3: Finding optimal policies from observations

The resulting explanations are:

hd�� fa�g� 
i

hd�� fa�� e�� c�g� �i

hd�� fa�� e�� c�g� 
i

hd�� fa�� e�� c�g� �i

This can be interpreted as an optimal policy, which says that
when a� is true do d�, when a� � e� � c� is true do d�, etc.
When none of the cases occur (i.e., when a� � e� � c� is
observed) it doesn’t matter which action is taken.

5.2 Partially Observable Single Decision

The partially observable single decision case consists of 4
steps:

1. finding explanations of utility�U� for each value U

and explanations for the observables, using expl;

2. repeated removing of dominated explanations and
case analysis on relevant observations;

3. computed expected utilities for the relevant cases of
observations and

4. using the optimize algorithm of Figure 3 to generate an
optimal strategy.

Suppose we have the last decision d � fd�� � � � � dkg � C�.
Dynamic programming would tell us that we have to con-
sider each case of expansion���d�� (the set of all value as-
signments to the ‘parents’ of d) — there are exponentially
many of these (in the size of ��d�). We would like to con-
sider each observable in ��d� separately, to see when it is
relevant to the decision being made. This is done by the use
of œ:

Definition 5.1 If O � ��d� let œ�O� � fho� expl�o�i �
o � Og. œ�O� is a representation for the explanations of the
possible observations in O. We assume that for each O �
��d�, that the function œ�O� is computed once and stored.

Example 5.2 Consider the example of Section 2.1.

For the last decision, namely fd���� d���� d��g, and for
each ‘observable’, we determine the œ function which tells
us what it is that the sensors detect:

œ�fta�hi�� ta�low�g�

� fhta�hi�� ffta�hi�ggi � hta�lo�� ffta�lo�ggig

œ�fas�pos�� as�neg�g�

� fhas�pos�� ffta�hi�� a�hi�g� fta�lo�� a�lo�ggi �

has�neg�� ffta�hi�� a�lo�g� fa�med�g�

fta�lo�� a�hi�ggig

œ�fbs�pos�� bs�neg�g�

� fhbs�pos�� ffb�pos�� true posg�

fb�neg�� false posggi�

hbs�neg�� ffb�neg�� true negg�

fb�pos�� false negggig

These are stored, and are combined with the explanations of
different utilities in order to determine the relevant cases.

In general we have to check correlations between the obser-
vations and the cases where one decision is better than the
other. The fully observable case showed the idea of to how
to isolate the cases where the one decision is better than an-
other.

Definition 5.3 Tuple hdi� ��K� ui, where � is a composite
observation and u is a number is a pre-policy if K is a set
of covering explanations of � � utility�u� which contains
di. Set E� of pre-policies is covering if for every world w�

there is a unique hdi� ��K� ui � E� such that d is true in w�

and one explanation in K is true in w� .

The algorithm works by maintaining a set of covering pre-
policies. These can be set up using:

Lemma 5.4 The set
fhdi� fg� fK � expl�utility�u�� � di � Kg� ui � di � dg is
a covering set of pre-policies. This can be easily computed
by generating expl�utility�u�� for each u for which there
are rules.



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

a

e

c

b

d

u

Figure 2: Fully observable, influence diagram

Consider the corresponding ICLDT theory. Here we con-
sider the two values of a to be represented as a� and a�. a�
is thus the proposition that says that a has one value, and a�

is the proposition that says that a has the other value. The
other variables are treated analogously.

C� � ffa�� a�g� fe�� e�g� fc�� c�g� fb�� b�gg

C� � ffd�� d�gg

O � ffa�� a�g� fe�� e�g� fc�� c�g� fb�� b�gg

��fd�� d�g� � ffa�� a�g� fe�� e�g� fc�� c�g� fb�� b�gg

The value of P� is irrelevant for the example. Suppose, that
the rule-base representation is of the form:

utility�
� a� � d��

utility�	� a� � e� � d��

utility��� a� � e� � d��

utility��� a� � e� � c� � d��

utility��� a� � e� � c� � d��

utility��� a� � e� � c� � d��

utility�
� a� � c� � d��

utility��� a� � e� � c� � d��

utility��� a� � e� � c��

When a� is true, c and b are irrelevant to the utility. When
a� � e� � c� is true then the decision is irrelevant. There
is even more pruning that can be carried out when we take
dominated strategies into account.

5.1.2 Finding optimal policies

The fully observable case is where either C� is empty or
there is one decision d � C� (the ‘last’ decision) where
��d� � C � fdg, and when this decision is removed, the

remaining theory is fully observable. This case is consid-
ered first; the general, partially observable, case will be a
modification of this case.

Suppose the last decision is fd�� � � � � dkg � C�.

Consider for eachu for which there are rules for utility�u�,
a covering and exclusive set of explanations of utility�u�.
The explanations form a partition on the set of possible
worlds (each possible world will have exactly one explana-
tion true). For each explanation there are two cases:

1. No di is in the explanation. In this case, when this ex-
planation is true, it doesn’t matter which decision is
made. For example, in the example above fa�� e�� c�g
is an explanation of a utility that does not involve ei-
ther d� or d�. When a��e��c� is true it doesn’t matter
which decision is made.

2. For all of the other cases, we treat an explanation as
a triple hdi� �� ui if � � fdig is an explanation for
utility�u�. If this is the case then the algorithm of Fig-
ure 3 will compute the optimal policy. The algorithm
repeatedly removes dominated explanations and splits
explanations where finer distinctions are needed.

At the end of the algorithm, the resulting explanations
corresponds to an optimal policy with hdi� �� uimean-
ing “do di if � is true, anduwill be the utility”. If more
than one of the �i is true, it doesn’t matter which ac-
tion is chosen (either the actions will be the same or
the utilities will be the same). The �i will cover all of
the cases not covered in case 1 above.

The worst case of this algorithm occurs when we have to
split on all alternatives — this is the same as enumerating
all states of the observables.

In our example above, for the case where the decision mat-
ters (i.e., for all cases except when a� � e� � c�) we have
the following explanations:

hd�� fa�g� 
i (1)

hd�� fa�� e�g� 	i (2)

hd�� fa�� e�g� �i (3)

hd�� fa�� e�� c�g� �i (4)

hd�� fa�� e�� c�g� �i (5)

hd�� fa�� e�� c�g� �i (6)

hd�� fa�� c�g� 
i (7)

hd�� fa�� e�� c�g� �i (8)

Explanations (2) and (3) are dominated by (1) and can be
removed. (5) is dominated by (6) and can be removed. (4)
is dominated by (7) and can be removed. We split (7) on
fe�� e�g, resulting in explanations hd�� fa�� e�� c�g� 
i and
hd�� fa�� e�� c�g� 
i, the latter of which can be pruned as it
is dominated by (8).



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

structure can be exploited to reduce the number of opti-
mizations (the technique reported here is orthogonal to the
idea of removing of impossible conditioning scenarios, so
in principle both could be used).

4 Abductive characterisation

The structure is exploited by the use of ‘explanations’. In-
stead of reasoning in the space of possible worlds (or in the
space of expansion���C��), we reason in the space of ex-
planations. These explanations only make the distinctions
needed.

In this section we present the ‘abductive’ view for the case
without negation as failure in the language. There are some
interesting issues [Poole, 1995a] that arise in combining
this with negation as failure, but these will only complicate
this paper.

Definition 4.1 A set � of atomic choices is consistent if
there is no alternative A � C such that jA 
 �j � �.

Definition 4.2 A composite choice on K � C is a set con-
sisting of exactly one element (atomic choice) from each
C � K.

Definition 4.3 An explanation of ground formula g is a
composite choice� on a subset of C such thatF�� j� g. A
covering set of explanations of g is a set of explanations of
g such that any explanation of g is a superset of an element
of the covering set.

Definition 4.4 If G is a ground propositional formula,
expl�G� is a set of composite choices defined recursively
as follows:

expl�G� �

��������
�������

fg if G � true

expl�A�� expl�B� if G � A �B

expl�A�� expl�B� if G � A �B

ffGgg if G � �CS
i expl�Bi� if G �� �C�

G Bi � F �

where K� � K� � f�� � �� � �� � K�� �� �
K�� consistent�������g. F � is the set of ground instances
of elements of F . expl is well defined as the theory is
acyclic.

It can be shown that expl�g� is a covering set of expla-
nations of g (this was essentially proved as the appendix
of [Poole, 1993b] and with negation as failure in [Poole,
1995a]) which forms a specification (as a DNF formula of
atomic choices) of all of the worlds in which g is true.

Explanations form a concise description of cases (only
making distinctions necessary). Sometimes we need to
make finer distinctions, for this we need to be able to ‘split’
composite choices:

Definition 4.5 If C � fc�� � � � � ckg is an alternative and �
is a composite choice such that � 
 C � fg then the split
of � on C is the set of composite choices

f� � fc�g� � � � � � � fckgg

It is easy to see that � and a split of � describe the same set
of possible worlds. The main use for splitting as described
in [Poole, 1995a] is, given a set of composite choices con-
struct a set of mutually incompatible composite choices that
describes the same set of possible worlds as the original set.
In this paper we show how splitting can be used to construct
optimal policies without enumerating all information states
of a decision.

When we refer to ‘the explanations of g’ are we mean a mu-
tually exclusive (no two explanations are true in any world)
and covering set of explanations of g, as found for example
by expl and either a structure on the rule base to ensure mu-
tual exclusivity (this is the structure achieved by translating
a Bayes net into the rules [Poole, 1993b]) or by converting
a non-exclusive set of composite choices into an equivalent
exclusive set by splitting and subsumption [Poole, 1995a].

5 Exploiting the rule structure

In this section we show how to exploit the rule structure.
We first give the fully observable case, and show how the
rule structure can be used to cut down the case analysis (in
a similar way to [Boutilier et al., 1995]). We then show dis-
cuss the partially observable case where the observations
only give partial information about the state of the world;
we then must ‘mesh’ the cases that make a difference to util-
ity and the cases that can be distinguished by observations.

5.1 Fully-observable case

5.1.1 Motivating example

In this section we present an example that not intended to
be realistic or meaningful, but demonstrated the algorithm
and the some of the savings.

Consider the fully observable influence diagram of Figure
2. Suppose each of the random and decision nodes rep-
resent a binary variable. In this influence diagram, if we
were to naively apply a dynamic programming procedure,
we would optimize the decision d for each of the � � ��
values of the parents. Just by looking at this diagram we
can see that we do not need to consider the values of b (this
is known as ‘barren node removal’ [Shachter, 1986]). Thus
we really only need to consider the � � � values of the
parents of b. What is presented in this paper is like the bar-
ren node removal, but for specific instances of the parents
(e.g., the value of e may be irrelevant for a particular value
of a).



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

When choosing a value for d the agent will know values
for ta, as and bs.

C� � ffa�low�� a�med�� a�hi�g, fb�pos�� b�neg�g,
ffalse pos� true negg, ffalse neg� true posgg.
a can have one of three values, b one of two values, the
other two alternatives specify the noise of the bs sensor.

Within the facts, we axiomatise how the ‘sensors’ work.

bs is a noisy sensor of b:

bs�pos� b�pos�� true pos

bs�pos� b�neg�� false pos

bs�neg� b�neg� � true neg

bs�neg� b�pos�� false neg

We can specify the reliability of the sensor as:

P��false pos� � ���� P��true neg� � ���

P��false neg� � ��� P��true pos� � ���

as is a sensor which we can control as to whether it detects
the high values for a or the low values for a (depending on
the value of ta):

as�pos� ta�hi� � a�hi�

as�pos� ta�lo�� a�lo�

as�neg� ta�hi�� a�lo�

as�neg� a�med�

as�neg� ta�lo�� a�hi�

We specify the priors on a and b as:

P��a�low�� � ��� P��a�med�� � ��	�

P��a�hi�� � ����

P��b�pos�� � ��
� P��b�neg�� � ��	

Finally the rules specify the utility function.

utility��� d���

utility���� a�hi� � d���

utility�	� a�med�� d���

utility��� a�lo�� d���

utility�� a�hi�� b�pos�� d��

utility��� a�med�� b�pos�� d��

utility��� a�lo�� b�pos�� d��

utility��� b�neg�� d��

The above represents the whole decision problem.

Note that the rules for utility and for the probability of as
incorporate much more structure than is reflected in the in-
fluence diagram.

3 So what?

We have presented what seems like quite a complicated se-
mantic construction. The main question arises is “So what;
why should anyone be interested?”

First of all this is a language that forms a bridge between the
purely logical languages, and the probabilistic and decision
theory representations.

If C� is empty, this is a representation for classical planning
that allows for concurrent actions, and uses action comple-
tion (in a similar way to how [Reiter, 1991] solves the frame
problem). We can axiomatise the world using logic pro-
grams. We have, however, a more sophisticated way of han-
dling uncertainty than just disjunction.

Bayesian networks [Pearl, 1988] can be modelled by C�
and F , in the same way that probabilistic Horn abduction
[Poole, 1993b] models Bayesian networks. What is added
is a richer language for F , with negation as failure and
fewer restrictions on the form of the rules [Poole, 1995a],
as well as agents with goals [Poole, 1995b].

The language is closely related to influence diagrams
[Howard and Matheson, 1981]. Elements of C� correspond
to decision nodes in influence diagrams, with ��A� corre-
sponding to the ‘parents’ of the decision node (these rep-
resent information availability when making the decision).
The value node is represented as the rules (inF) that imply
utility�u� for some u.

The main problem considered in this paper is how the rep-
resentation can be exploited for computational gain.

Influence diagram evaluation procedures can be divided
into two classes:

1. Those that do dynamic programming, optimizing
the last action first [Shachter, 1986; Cooper, 1988;
Shachter and Peot, 1992; Zhang et al., 1994].

2. Those that convert the influence diagram into a deci-
sion tree (e.g., [Howard and Matheson, 1981; Qi and
Poole, 1995]), and search it using a search method
such as �-minimax [Ballard, 1983].

Once it has been realised that efficient Bayesian network al-
gorithms can be used for the probabilistic part of the rea-
soning [Cooper, 1988; Qi and Poole, 1995], the main cost
is in the number of optimizations that needs to be done. For
each of the values of the parents of a decision node, one op-
timization is done. This can be improved in the decision
tree methods by not considering those assignments to par-
ents that will have zero probability [Qi and Poole, 1995],
but there is still much more that can be done.

The main claim of this paper is that we can exploit the rule-
based structure to gain efficiency. We show how the rule



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

The expansion of S corresponds to the cross product of the
elements ofS and, whenS consists of non-intersecting sets,
to the set of minimal hitting sets [Reiter, 1987] of S. The set
of possible worlds corresponds to the expansion of C.

Definition 2.6 An ICLDT theory is utility complete if for
each possible worldw� there is a unique numberu such that
w� j� utility�u�. The logic program will have rules for
utility�u�.

Definition 2.7 An ICLDT theory is observation inconsis-
tent if there exists possible world w� , and there exists O �
O with o� � O� o� � O� o� �� o� such that w� j� o� � o�.
Otherwise the ICLDT theory is observation consistent. An
ICLDT theory is observation complete if for all possible
worlds w� , and for all O � O, there exists o � O such
that w� j� o.

The above definitions are to make sure that we can treat the
elements of O as random variables. Unlike elements of C,
they are not exclusive and covering ‘by definition’. We will
always require a theory to be observation consistent, but,
when we have negation as failure in the logic [Poole, 1995a]
we will not require the theory to be observation complete
(there may be an extra, unnamed element of each element
of O). Note that observation consistency is not a severe re-
striction — we can always make O a set of singleton sets,
but then we can’t exploit the exclusiveness of observations.

In this paper we assume all our theories are observation con-
sistent and complete.

If an ICLDT theory is observation consistent and observa-
tion complete, then for each world w� there is a unique el-
ement of expansion�O� that is true in w� . Also, for each
C � C� there is a unique element of expansion���C�� that
is true in w� , this element is written here as �� �C�.

Definition 2.8 If hC�� C��O� �� P��Fi is an ICLDT theory,
then a (pure) strategy is a function 	 on C� such that if C �
C�, 	�C� is a function expansion���C��� C.

The elements of expansion���C�� are the information
available when the decision C is made. In other words a
strategy specifies which element of C (for each C � C�) to
choose (‘do’) for each of the possible observations.

Definition 2.9 If ICLDT theory hC�� C��O� �� P��Fi is
utility complete, and 	 is a strategy, then the expected util-
ity of strategy 	 is

��	� �
X
�

p�	� 
�� u�
�

(summing over all selector functions 
 on C � C� � C�)
where

u�
� � u if w� j� utility�u�

ta

bs

a

b

utility

as

d

Figure 1: Partially observable, influence diagram

(this is well defined as the theory is utility complete), and

p�	� 
� �

��
�

Q
C��C�

P��
�C��� if 
�C�� � 	��� �C���
for each C� � C�

� otherwise

u�
� is the utility of world w� . p�	� 
� is the probability
of world 
 under strategy 	. For the worlds that could be
the result of what the agent chooses (i.e., when the selection
function 
 selects the same element ofA as does the strategy
	), the probability is the product of the independent choices
of nature. It is easy to show that this induces a probability
measure (i.e., for each strategy, the sum of the probabilities
of the worlds is �).

2.1 Representing an influence diagram

In this section we axiomatise the influence diagram of Fig-
ure 1 in order to demonstrate how the above semantic
framework can represent decision problems. This example
will also be used to demonstrate our algorithm. In this dia-
gram there is a noisy sensor for b, namely bs, and a control-
lable sensor for a, namely as (the agent can control which
aspect of a it senses).

The problem be represented in our framework as:

C� � ffta�hi�� ta�low�g� fd���� d���� d��gg.
There are two decisions to be made: the agent must
choose one of two possible values for ta and one of three
possible values for d.

O � ffta�hi�� ta�low�g, fas�pos�� as�neg�g�
fbs�pos�� bs�neg�gg.

��fta�hi�� ta�low�g� � fg.
The agent has no information available when choosing a
value for ta.

��fd���� d���� d��g� � O.



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

— we don’t need the influence diagram and the rules), as
well as being interesting in its own right as a mix of logic
and decision/game theory [Poole, 1995b]. The meshing is
also easily described in this framework in terms of ‘expla-
nations’. The ICL also naturally has a way to include log-
ical variables, and thus we allow for parametrizable influ-
ence diagrams (see [Poole, 1993b] for a description of the
purely probabilistic case).

2 The Independent Choice Logic

The Independent Choice Logic specifies a way to build
possible worlds. Possible worlds are built from choosing
propositions from independent alternatives, and then ex-
tending these ‘total choices’ with a logic program. This sec-
tion defines the single agent case ICL DT .

There are two languages we will use: LF which, for this
paper, is the language of acyclic logic programs [Apt and
Bezem, 1991], and the language LQ of queries which we
take to be arbitrary propositional formulae (the atoms cor-
responding to ground atomic formulae of the languageLF ).
We write f j� q where f � LF and q � LQ if q is true in
the unique stable model of f or, equivalently, if q follows
from Clark’s completion of q (the uniqueness of the stable
model and the equivalence for acyclic programs are proved
in [Apt and Bezem, 1991]). See [Poole, 1995a] for a de-
tailed analysis of negation as failure in this framework, and
for an abductive characterisation of the logic.

Definition 2.1 A choice space is a set of sets of ground
atomic formulae, such that if C�, and C� are in the choice
space, and C� �� C� then C� 
 C� � fg. An element of
a choice space is called a choice alternative (or sometimes
just an alternative). An element of a choice alternative is
called an atomic choice. An atomic choice can appear in at
most one alternative.�

Definition 2.2 An ICLDT theory is a tuple
hC�� C��O� �� P��Fi where

C� called nature’s choice space, is the choice space of al-
ternatives controlled by nature.

C� called the agent’s choice space, is the choice space of
alternatives controlled by our agent (what the agent de-
cides to do). No atomic choice can be both in an ele-

�Alternatives correspond to ‘variables’ in decision theory.
This terminology is not used here in order to not confuse logical
variables (that are allowed as part of the logic program), and ran-
dom variables. An atomic choice corresponds to an assignment of
a value to a variable; the above definition just treats a variable hav-
ing a particular value as a proposition (not imposing any particu-
lar syntax); the syntactic restrictions and the semantic construction
ensure that the values of a variable are mutually exclusive and cov-
ering, as well as that the variables are unconditionally independent
(see [Poole, 1993b])

ment of C� and in an element of C� (i.e., 	C� � C�
	C� � C� C� 
 C� � fg). Let C � C� � C�.

O the observables is a set of sets of ground atomic formu-
lae. Elements of O are called observation alterna-
tives; elements of observation alternatives are called
atomic observations. N.B. elements of observation
alternatives can unify with the head of rules or can be
elements of choice alternatives.

� the observable function, is a function � � C� � O.
The idea is that when the agent decides which ele-
ment of A � C� to choose, it will have ‘observed’
one atomic observation from each observation alterna-
tive in ��A�. Elements of ��A� are the information
available to the agent when it has to choose an element
of A. We assume a ‘no forgetting’ constraint� which
means that the element of C� are totally ordered and if
C� � C� then C� � ��C�� and ��C�� � ��C��.

P� is a function �C� � ��� �� such that 	C � C�,P
c�C P��c� � �� I.e., P� is a probability measure

over the alternatives controlled by nature.

F called the facts, is an acyclic logic program such that
no atomic choice (in an element of C) unifies with the
head of any rule, and such that there is an acyclic or-
dering [Apt and Bezem, 1991] where every element of
every element of ��A� is before every element of A.

The independent choice logic specifies a particular seman-
tic construction. The semantics is defined in terms of pos-
sible worlds. There is a possible world for each selection
of one element from each alternative. What follows from
these atoms together with F are true in this possible world.

Definition 2.3 If S is a set of sets, a selector function on
S is a mapping 
 � S � �S such that 
�S� � S for all
S � S. The range of selector function 
 , written R�
� is
the set f
�S� � S � Sg.

Definition 2.4 Given ICLDT theory hC�� C��O� �� P��Fi,
let C � C� � C�. For each selector function 
 on C there
is a possible world w� . If f is a formula in language LQ,
andw� is a possible world, we writew� j� f (read f is true
in possible world w� ) if F � R�
� j� f .

The existence and uniquenessof the model follows from the
acyclicity of the logic program [Apt and Bezem, 1991].

Definition 2.5 If S is a set of sets, the expansionofS, writ-
ten expansion�S� is the set fR�
�j
 is a selector function
on Sg.

�This constraint can be weakened slightly when the utility can
be decomposed into sums [Zhang et al., 1994]



In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,
Montreal, Quebec, Canada, August 18-20, 1995

Exploiting the Rule Structure for Decision Making within the Independent
Choice Logic

David Poole�

Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada V6T 1Z4
poole@cs.ubc.ca

http://www.cs.ubc.ca/spider/poole

Abstract

This paper introduces the independent choice
logic, and in particular the “single agent with na-
ture” instance of the independent choice logic,
namely ICLDT . This is a logical framework for
decision making uncertainty that extends both
logic programming and stochastic models such
as influence diagrams. This paper shows how
the representation of a decision problem within
the independent choice logic can be exploited to
cut down the combinatorics of dynamic program-
ming. One of the main problems with influence
diagram evaluation techniques is the need to opti-
mise a decision for all values of the ‘parents’ of a
decision variable. In this paper we show how the
rule based nature of the ICLDT can be exploited
so that we only make distinctions in the values of
the information available for a decision that will
make a difference to utility.

1 Introduction

Most current approaches to solving decision problems un-
der uncertainty involve a case analysis on all available in-
formation (for example on all current and past observations
and past actions in influence diagrams [Howard and Math-
eson, 1981; Cooper, 1988; Shachter and Peot, 1992; Qi and
Poole, 1995], or on the current belief state in partially ob-
servable Markov decision problems (POMDPs) [Monahan,
1982; Cassandra et al., 1994]).

In this paper, we consider how a logic-based representation
of decision problems that treats causal rules as logic pro-
grams can be exploited to reduce the case analysis for dy-
namic programming. This representation that allows one to
express logical rules and choices made by various agents, is
capable of representing general decision problems (that ex-
tends both influence diagrams and (finite stage) POMDPs).

�Scholar, Canadian Institute for Advanced Research

The logic is the independent choice logic (ICL) that allows
for a space of independent choices and a logic program
that gives the consequences of these choices. The choices
can be made by nature (which has probabilities over the
choices) or by purposive agents (who are trying to max-
imise their utility). The ICL extends the author’s probabilis-
tic Horn abduction [Poole, 1993b] to include negation as
failure and multiple agents. In this paper we only consider
the decision theoretic (single agent under uncertainty) case.
For the no-agent case (with probabilities over choices), the
rules induce an independence equivalent to that of Bayesian
networks. The rules also allow the representation of a form
of ‘propositional independence’ where one variable may
only be dependent on another for some values of a third
variable. It is this last property that we exploit in this pa-
per.

The main point of this paper is to show how the rule-
structure can be exploited to gain efficiency. The rules pro-
vide a modular specification of utility, and a modular spec-
ification of what will be observed when a decision is made
(this is similar to using decision trees to specify the proba-
bility and utility tables [Smith et al., 1993; Boutilier et al.,
1995]). Instead of optimizing a decision for each of its in-
formation states, we ‘mesh’ the decision trees for the ‘ob-
servables’ (the information available when the decision is
made) and the decision trees for the utilities, and only make
the distinctions in the observables that matter (would lead
to different utilities). We show by example that this can
cut down on the number of optimizations that we need to
do. The meshing becomes complicated when interleaved
with dominance testing — we want to prune dominated de-
cisions as soon as possible, so we don’t make distinctions
that are only important for decisions than can be shown to
be non-optimal.

This paper could have been described in terms of decision
trees (as does [Boutilier et al., 1995] using a similar idea
for fully observable MDPs, see Section 6). This was not
done for a number of reasons. The ICL forms a simple log-
ical framework that includes influence diagrams (the rules
can encode all of the dependencies of an influence diagram


