
Lifted Aggregation in Directed First-order Probabilistic Models

Jacek Kisyński and David Poole
Department of Computer Science
University of British Columbia
{kisynski,poole}@cs.ubc.ca

Abstract
As exact inference for first-order probabilistic
graphical models at the propositional level can be
formidably expensive, there is an ongoing effort to
design efficient lifted inference algorithms for such
models. This paper discusses directed first-order
models that require an aggregation operator when a
parent random variable is parameterized by logical
variables that are not present in a child random vari-
able. We introduce a new data structure, aggrega-
tion parfactors, to describe aggregation in directed
first-order models. We show how to extend Milch
et al.’s C-FOVE algorithm to perform lifted infer-
ence in the presence of aggregation parfactors. We
also show that there are cases where the polynomial
time complexity (in the domain size of logical vari-
ables) of the C-FOVE algorithm can be reduced to
logarithmic time complexity using aggregation par-
factors.

1 Introduction
Probabilistic graphical models, such as belief networks, are
a popular tool for representing dependencies between ran-
dom variables. However, such standard representations are
propositional, hence are not well suited for describing rela-
tions between individuals or quantifying over sets of individ-
uals. First-order logic has the capacity for representing re-
lations and quantification of variables, but it does not treat
uncertainty. Representations that mix graphical models and
first-order logic (first-order probabilistic models) were pro-
posed more than fifteen years ago [Horsch and Poole, 1990;
Breese, 1992]. In these models, random variables are param-
eterized by logical variables that are typed with populations
of individuals.

Among the appeals of the first-order probabilistic models
is that one should be able to fully specify a model, that is,
its structure and the accompanying probability distributions,
before knowing the individuals in the modeled domain. This
means in particular that, even though we might not know the
sizes of the populations, we still should be able to specify the
model. To make this possible, the length of a specification of
a first-order probabilistic model must be independent of the
sizes of the populations in the model.

Although many first-order probabilistic languages have
since emerged [Getoor and Taskar, 2007; De Raedt et al.,
2008], the most common exact inference technique has been
based on dynamical propositionalization (grounding) of the
portion of the first-order model that is relevant to the query,
followed by probabilistic inference performed at the proposi-
tional level. The problem with these propositional representa-
tions is that they may be extremely large, rendering inference
intractable even for very simple first-order models. Other ap-
proaches exploit redundant computation [Koller and Pfeffer,
1997; Pfeffer and Koller, 2000], or compile the problem into
an arithmetic circuit [Chavira et al., 2006].

The idea of lifted inference is to carry out as much infer-
ence as possible without propositionalizing. The correctness
of this approach is judged by having the same result as if we
had first grounded and then carried out standard inference.
An exact lifted inference procedure for first-order probabilis-
tic, directed models was proposed by Poole [2003]. One of
the obstacles in avoiding propositionalization occurs when
a first-order model contains adjacent parameterized random
variables that have different parameterizations. This problem
was investigated by de Salvo Braz et al. [2007]. Further work
resulted in the C-FOVE algorithm [Milch et al., 2008], which
is currently the state of the art in exact lifted inference.

While Poole considered directed models, the later work
by de Salvo Braz et al. and Milch et al. focused on undi-
rected models. Their results can be used for directed models,
which have the advantage of allowing pruning of the part of
the model that is irrelevant to the query. Also, conditional
probability distributions in directed models can be interpreted
and learned locally, which is important for models that are
specified by people or need to be understood by people.

One aspect that arises in directed models is the need for
aggregation that occurs when a parent random variable is pa-
rameterized by logical variables that are not present in a child
random variable. Currently available first-order inference al-
gorithms do not allow a description of aggregation in first-
order models that is independent of the sizes of the popula-
tions. In this paper we introduce a new data structure, aggre-
gation parfactors, describe how to use it to represent aggre-
gation in first-order models, and show how to perform lifted
inference in its presence. Experiments presented in Section 5
show that aggregation parfactors can lead to gains in effi-
ciency.

2 Preliminaries
Like previous work on lifted probabilistic inference, this pa-
per is not tied to any particular first-order probabilistic lan-
guage. We reason at the level of data structures and assume
that various first-order languages (or their subsets) will com-
pile to these data structures. First-order probabilistic lan-
guages share a concept of a parameterized random variable.
We introduce related terms in Section 2.1. The idea of
parameterized random variables is similar to the notion of
plates [Buntine, 1994]; we use plates notation in our figures.
In Section 2.2 we discuss aggregation in directed first-order
probabilistic models.

2.1 Parameterized Random Variables

If S is a set, we denote by |S| the size of the set S.
A population is a set of individuals. A population corre-

sponds to a domain in logic. For example, a population may
be a set of all soccer players involved in a soccer game, where
rossi is one of the individuals and the population size is 22.

A parameter corresponds to a logical variable and is typed
with a population. For example, parameter Player may be
typed with the population of all players involved in a soccer
game. Given parameter A, we denote its population by D(A).
Given a set of constraints C, we denote a set of individuals
from D(A) that satisfy constraints in C by D(A) : C.

A substitution is of the form {X1/t1. . . . ,Xk/tk}, where the
Xi are distinct parameters, and each term ti is a parameter
typed with a population or a constant denoting an individual
from a population. A ground substitution is a substitution,
where each ti is a constant.

A parameterized random variable is of the form
f (t1, . . . , tk), where f is a functor (either a function symbol
or a predicate symbol) and ti are terms. We denote a set of
parameters of the parameterized random variable f (t1, . . . , tk)
by P(f (t1, . . . , tk)). Each functor has a set of values called the
range of the functor. We denote the range of the functor f
by range(f). Examples of parameterized random variables
are in j(Player) and in j(rossi). We have P(in j(Player)) =
{Player} and P(in j(rossi)) = /0.

A parameterized random variable f (t1, . . . , tk) represents a
set of random variables, one for each possible ground substi-
tution to all of its parameters. For example, if Player is typed
with a population consisting of all 22 individuals playing
the game, then in j(Player) represents 22 random variables:
in j(rossi), in j(panucci), . . . , in j(desailly) corresponding to
ground substitutions {Player/rossi}, {Player/panucci}, . . . ,
{Player/desailly}, respectively. The range of the functor of
the parameterized random variable is the domain of random
variables represented by the parameterized random variable.

Let v denote an assignment of values to random variables;
v is a function that takes a random variable and returns its
value. We extend v to also work on parameterized random
variables, where we assume that free parameters are univer-
sally quantified. For example, if v(in j(Player)) = true, then
each of the random variables represented by in j(Player),
namely in j(rossi), in j(panucci), . . . , in j(desailly), is as-
signed the value true by v.

FIRST-ORDER PROPOSITIONAL

Player

substitution() substitution()

sub(Player)

inj(Player)

shape(Player)

sub(rossi) sub(desailly)sub(panucci)

inj(rossi) inj(panucci) inj(desailly)

shape(desailly)shape(panucci)shape(rossi)

Figure 1: A first-order model from Example 1 and its equiva-
lent belief network. Aggregation is denoted by curved arcs.

2.2 Aggregation in Directed First-order
Probabilistic Models

First-order probabilistic models describe probabilistic depen-
dencies between parameterized random variables. A ground-
ing of a first-order probabilistic model is a propositional prob-
abilistic model obtained by replacing each parameterized ran-
dom variable with the random variables it represents and
replicating appropriate probability distributions.

Example 1. Consider the directed first-order probabilis-
tic model and its grounding presented in Figure 1. The
model is meant to represent that whether a player playing
a soccer game is substituted or not during a single soc-
cer game depends on whether he gets injured. The prob-
ability of an injury in turn depends on a physical condi-
tion of the player. The model has four nodes: a parameter-
ized random variable shape(Player) with range { f it,un f it},
a parameterized random variable in j(Player) with range
{true, f alse}, a parameterized random variable sub(Player)
with range {true, f alse}, and a variable substitution() with
range {true, f alse} that is true if a player was substituted
during the game and f alse otherwise. We have D(Player) =
{rossi, panucci, . . . , desailly} and |D(Player) |= 22.

A parameterized random variable shape(Player) repre-
sents the 22 random variables in the corresponding proposi-
tional model, as do variables in j(Player) and sub(Player).
Therefore, in the propositional model, the number of par-
ent nodes influencing the node substitution() is equal to 22.
Their common effect aggregates in the child variable. In
the discussed model we use the logical OR as an aggrega-
tion operator to describe the (deterministic) conditional prob-
ability distribution P(substitution()|sub(Player)). Note that
substitution() is a noisy-OR of in j(Player).

In a directed first-order model, when a child variable has
a parent variable with extra parameters, in the grounding the
child variable has an unbounded number of parents. We need
some aggregation operator to describe how the child vari-
able depends on the parent variable. Following Zhang and
Poole [1996], we assume that the range of the parent variable

is a subset of the range of the child variable, and use a com-
mutative and associative deterministic binary operator over
the range of the child variable as an aggregation operator ⊗.

Given probabilistic input to the parent variable, we can
construct any causal independence model covered by the defi-
nition of causal independence from Zhang and Poole [1996],
which in turn covers common causal independence models
such as noisy-OR [Pearl, 1986] and noisy-MAX [Dı́ez, 1993]
as special cases. In other words, this allows any causal in-
dependence model to act as underlying mechanism for ag-
gregation in directed first-order models. For other types of
aggregation in first-order models, see Jaeger [2002].

In this paper we require that the directed first-order proba-
bilistic models satisfy the following conditions:

(1) for each parameterized random variable, its parent has at
most one extra parameter

(2) if a parameterized random variable c(. . .) has a parent
p(. . . ,A, . . .) with an extra parameter A, then:
(a) p(. . . ,A, . . .) is the only parent of c(. . .)
(b) the range of p is a subset of the range of c
(c) c(. . .) is a deterministic function of the par-

ent: c(. . .) = p(. . . ,a1, . . .)⊗ . . .⊗ p(. . . ,an, . . .) =⊗
a∈D(A) p(. . . ,a, . . .), where ⊗ is a commutative

and associative deterministic binary operator over
the range of c.

At first the above conditions seem to be very restrictive, but
they in fact are not. There is no need to define the aggrega-
tion over more than one parameter due to the associativity and
commutativity of the ⊗ operator. We can obtain more com-
plicated distributions by introducing auxiliary variables and
combining multiple aggregations.

Example 2. Consider a parent variable p(A,B,C) and a child
variable c(C). We can describe a ⊗-based aggregation over
A and B, c(C) =

⊗
(a,b)∈D(A)×D(B) p(A,B,C) using an auxil-

iary parameterized random variable c′(B,C) such that c′ has
the same range as c. Let c′(B,C) =

⊗
a∈D(A) p(A,B,C), then

c(C) =
⊗

b∈D(B) c′(B,C).

Similarly, with the use of auxiliary nodes, we can construct
a distribution that combines an aggregation with influence
from other parent nodes or even combines multiple aggre-
gations generated with different operators.

In the rest of the paper, we assume that the discussed mod-
els satisfy conditions (1) and (2), for ease of presentation and
with no loss of generality.

3 Existing Algorithm
In this section, we introduce counting formulas [Milch et al.,
2008] and parfactors [Poole, 2003] and give an overview of
the C-FOVE algorithm [Milch et al., 2008].

3.1 Counting Formulas
A counting formula is #A:C [f (. . . ,A, . . .)], where A is a pa-
rameter that is bound by the # sign, C is a set of inequality
constraints involving A and f (. . . ,A, . . .) is a parameterized
random variable.

The value of #A:C [f (. . . ,A, . . .)], given an assignment of
values to random variables v, is the histogram h that maps
the range of f to natural numbers such that

h(x) = |{a ∈ (D(A) :C) : v(f (. . . ,a, . . .)) = x}|.
The range of such a counting formula is the set of histograms
having a bucket for each element x in the range of f with
entries adding up to |D(A) : C |. The number of such his-
tograms is

(|D(A):C |+|range(f) |−1
|range(f) |−1

)
, which for small values of

|range(f) | is O(|D(A) : C ||range(f) |−1). Thus, any exten-
sional representation of a function on a counting formula
#A:C [f (. . . ,A, . . .)] requires amount of space at least linear in
|D(A) : C |.

Counting formulas allow us to exploit interchangeability
within factors. They were inspired by work on cardinality
potentials [Gupta et al., 2007] and counting elimination [de
Salvo Braz et al., 2007]. They are a new form of param-
eterized random variables. Unless otherwise stated, by pa-
rameterized random variables we understand both forms: the
standard, defined in Section 2.1, and counting formulas.

3.2 Parametric Factors
A factor on a set of random variables represents a function
that, given an assignment of a value to each random vari-
able from the set, returns a real number. Factors are used in
the variable elimination algorithm [Zhang and Poole, 1994]
to store initial conditional probabilities and intermediate re-
sults of computation during probabilistic inference in graph-
ical models. Operations on factors include multiplication of
factors and summing out random variables from a factor.

Let v be an assignment of values to random variables and
let F be a factor on a set of random variables S. We extend v
to factors and denote by v(F) the value of the factor F given
v. If v does not assign values to all of the variables in S, then
v(F) denotes a factor on other variables.

A parametric factor or parfactor is a triple 〈C,V,F〉where
C is a set of inequality constraints on parameters (between a
parameter and a constant or between two parameters), V is
a set of parameterized random variables and F is a factor
from the Cartesian product of ranges of parameterized ran-
dom variables in V to the reals.

A parfactor 〈C,V,F〉 represents a set of factors, one for
each ground substitution G to all free parameters in V that
satisfies constraints in C. Each such factor FG is a factor
on the set of random variables obtained by applying a sub-
stitution G. Given an assignment v to the random variables
represented by V , we define v(FG) = v(F).

We use parfactors to represent probability distributions for
parameterized random variables in first-order models and in-
termediate computation results during lifted inference.

Normal-Form Constraints
Let X be a parameter in V from a parfactor 〈C,V,FF〉. In gen-
eral, the size of the set D(X) : C depends on other parameters
in V (see discussions on uniform solution counting partitions
in de Salvo Braz et al. [2007] and normal form constraints
in Milch et al. [2008]).

Milch et al. [2008] introduced a special class of sets of
inequality constraints. Let C be a set of inequality constraints

on parameters and X be a parameter. We denote by ECX the set
of terms t such that (X 6= t)∈ C. Set C is in normal form if for
each inequality (X 6= Y) ∈ C, where X and Y are parameters,
ECX \{Y}= ECY \{X}.

Consider a parfactor 〈C,V,FF〉, where C is in normal form.
For all parameters X in V , |D(X) : C |= |D(X) |− |ECX |.

We require that for a parfactor 〈C,V,FF〉 involving count-
ing formulas, the union of C and the constraints in all the
counting formulas in V is in normal form. Other parfactor do
not need to be in normal form.

3.3 C-FOVE
Let Φ be a set of parfactors. Let J (Φ) denote a factor equal
to the product of all factors represented by elements of Φ. Let
U be the set of all random variables represented by parame-
terized random variables present in parfactors in Φ. Let Q be
a subset of U. The marginal of J (Φ) on Q, denoted JQ(Φ),
is defined as JQ(Φ) = ∑U\QJ (Φ).

Given Φ and Q, the C-FOVE algorithm computes the
marginal JQ(Φ) by summing out random variables from
U \Q, where possible in a lifted manner. Evidence can be
handled by adding to Φ additional parfactors on observed ran-
dom variables.

As lifted summing out is only possible under certain condi-
tions, the C-FOVE algorithm uses elimination enabling oper-
ations, such as applying substitutions to parfactors and mul-
tiplication. Below we show when and how these operations
can be applied to aggregation parfactors. We refer the reader
to Milch et al. [2008] for more details on C-FOVE.

4 Incorporating aggregation in C-FOVE
In Section 4.1, we show how to represent aggregation in first-
order models using a simple form of aggregation parfactors.
In Section 4.2, we show how these aggregation parfactors can
be converted to parfactors that in turn can be used during in-
ference with C-FOVE. In Section 4.3, we describe when and
how reasoning directly in terms of these aggregation parfac-
tors can achieve improved efficiency. In Section 4.4 we out-
line how a generalized version of aggregation parfactors in-
creases the number of cases for which efficiency is improved.

4.1 Aggregation Parfactors
Example 3. Consider the model presented in Figure 1.
We cannot represent the conditional probability distri-
bution P(substitution()|sub(Player)) with a parfactor 〈 /0,
{sub(Player), substitution()}, F〉 as even simple noisy-
OR cannot be represented as a product. A parfactor 〈 /0,
{sub(rossi), . . . , sub(desailly), substitution()}, F〉 is not an
adequate input representation of this distribution because its
size would depend on |D(Player) |. The same applies to a
parfactor 〈 /0, {#Player: /0[sub(Player)], substitution()}, F〉 as
the size of the range of #Player: /0[sub(Player)] depends on
|D(Player) |.
Definition 1. An aggregation parfactor is a hex-tuple
〈C, p(. . . ,A, . . .),c(. . .),Fp,⊗,CA〉, where
• p(. . . ,A, . . .) and c(. . .) are parameterized random vari-

ables
• the range of p is a subset of the range of c

• A is the only parameter in p(. . . ,A, . . .) that is not in
c(. . .)
• C is a set of inequality constraints not involving A
• Fp is a factor from the range of p to real numbers
• ⊗ is a commutative and associative deterministic binary

operator over the range of c
• CA is a set of inequality constraints involving A.

An aggregation parfactor 〈C, p(. . . ,A, . . .), c(. . .),Fp,⊗, CA〉
represents a set of factors, one for each ground substitution
G to parameters P(p(. . . ,A, . . .))∪ P(. . .))\{A} that satisfies
constraints in C. Each factor FG is a mapping from the Carte-
sian product

(×a∈D(A):CA
range(p)

)× range(c) to the reals,
which, given an assignment of values to random variables v,
is defined as follows:

v(FG) =

∏a∈D(A):CA

Fp(v(p(. . . ,A, . . .))),
if
⊗

a∈D(A):CA
v(p(. . . ,a, . . .)) = v(c(. . .));

0, otherwise.

It is important to notice that D(A) : CA might vary for dif-
ferent ground substitutions G if the set C∪CA is not in nor-
mal form (see Section 3.2). The space required to repre-
sent an aggregation parfactor does not depend on the size of
the set D(A) : CA. It is also at most quadratic in the size of
range(c), as the operator ⊗ can be represented as a factor
from range(c)×range(c) to range(c).

When an aggregation parfactor 〈C, p(. . . ,A, . . .), c(. . .),
Fp, ⊗, CA〉 is used to describe aggregation in a first-order
model, the factor Fp will be a constant function with the
value 1. An aggregation parfactor created during inference
may have a non-trivial Fp component (see Section 4.3).

Example 4. Consider the first-order model and its ground-
ing presented in Figure 1. We can represent the condi-
tional probability distribution P(substitution()|sub(Player))
with an aggregation parfactor 〈 /0, sub(Player), substitution(),
Fsub, OR, /0〉, where Fsub is a constant function with the value
1. The size of the representation does not depend on the pop-
ulation size of the parameter Player.

In the rest of the paper, Φ denotes a set of parfactors and ag-
gregation parfactors. The notation introduced in Section 3.3
remains valid under the new meaning of Φ.

4.2 Conversion to Parfactors
Conversion using counting formulas
Consider an aggregation parfactor 〈C, p(. . . ,A, . . .), c(. . .),
Fp, ⊗, CA〉. Since ⊗ is an associative and commutative op-
erator, given an assignment of values to random variables
v, it does not matter which of the variables p(. . . ,a, . . .),
a∈D(A):CA are assigned each value from range(p), but only
how many of them are assigned each value. This property
was a motivation for the counting elimination algorithm [de
Salvo Braz et al., 2007] and counting formulas [Milch et al.,
2008], and allows us to convert aggregation parfactors to a
product of two parfactors, where one of the parfactors in-
volves a counting formula.

Proposition 1. Let gA = 〈C, p(. . . ,A, . . .), c(. . .), Fp,⊗, CA〉
be an aggregation parfactor from Φ such that set C∪CA is in

normal form. Let F# be a factor from the Cartesian product
range(#A:CA [p(. . . ,A, . . .)]) × range(c) to {0,1}. Given an
assignment of values to random variables v, the function is
defined as follows:

F#(h(),v(c(. . .))) =

1, if

⊗
x∈range(p)

⊗h(x)
i=1 x

= v(c(. . .));
0, otherwise,

where h() is a histogram from range(#A:CA [p(. . . ,A, . . .)]).
Then J (Φ) = J (Φ \ {gA}∪ {〈C∪CA, {p(. . . ,A, . . .)}, Fp〉,
〈C, {#A:CA [p(. . . ,A, . . .)], c(. . .)}, F#〉}).

If the set C∪CA is not in normal form we will need to
use splitting operation described in Section 4.3 to convert the
aggregation parfactor to a set of aggregation parfactors with
constraint sets in normal form.

Conversion for MAX and MIN operators
If in an aggregation parfactor ⊗ is the MAX operator (which
includes the OR operator as a special case), we can use a fac-
torization presented by Dı́ez and Galán [2003] to convert the
aggregation parfactor to parfactors without counting formu-
las. The factorization is an example of the tensor rank-one
decomposition of a conditional probability distribution [Sav-
icky and Vomlel, 2007].
Proposition 2. Let gA = 〈C, p(. . . ,A, . . .), c(. . .), Fp, MAX,
CA〉 be an aggregation parfactor from Φ, where MAX opera-
tor is induced by a total ordering ≺ of range(c). Let s() be a
successor function induced by ≺. Let c′(. . .) be an auxiliary
parameterized random variable with the same parameteriza-
tion and the same range as c. Let Fc be a factor from the
Cartesian product range(p)×range(c) to real numbers that,
given an assignment of values to random variables v, is de-
fined as follows:

Fc(v(p(. . . ,A, . . .)),v(c′(. . .))) ={Fp(v(p(. . . ,A, . . .))), if v(p(. . . ,A, . . .)) 4 v(c′(. . .));
0, otherwise.

Let F∆ be a factor from the Cartesian product
range(p)×range(c) to real numbers that, given v, is
defined as follows:

F∆(v(c(. . .)),v(c′(. . .)))=

1, if v(c(. . .))=v(c′(. . .));
−1, if v(c(. . .))=s(v(c′(. . .)));

0, otherwise.

Then J (Φ) = J (Φ \ {gA}∪ {〈C∪CA, {p(. . . ,A, . . .),
c′(. . .)}, Fc〉, 〈C, {c(. . .), c′(. . .)}, F∆〉}).

An analogous proposition holds for the MIN operator. In
both cases, as shown in Section 5, the above conversion is
advantageous to the conversion described in Proposition 1,
which uses counting formulas.

4.3 Operations on Aggregation Parfactors
In the previous section we showed that aggregation parfac-
tors can be used during a modeling phase and then, during
inference with the C-FOVE algorithm, once populations are
known, aggregation parfactors can be translated to parfactors.

Such a solution allows us to take advantage of the modeling
properties of aggregation parfactors and C-FOVE inference
capabilities. It is also possible to exploit aggregation parfac-
tors during inference. In this section we describe operations
on aggregation parfactors that can be added to the C-FOVE
algorithm. These operation can delay or even avoid transla-
tion of aggregation parfactors to parfactors involving count-
ing formulas. This in turn, as we will see in Section 5, can
result in more efficient inference.

Splitting
The C-FOVE algorithm applies substitutions to parfactors to
handle observations and queries and to enable the multiplica-
tion of parfactors. As this operation results in the creation of
a residual parfactor, it is called splitting. Below we present
how aggregation parfactors can be split on substitutions.
Proposition 3. Let gA = 〈C, p(. . . ,A, . . .), c(. . .), Fp,⊗, CA〉
be an aggregation parfactor from Φ. Let {X/t} be a substitu-
tion such that (X 6= t) /∈ C and X ∈ P(p(. . . ,A, . . .))\{A} and
term t is a constant such that t ∈ D(X), or a parameter such
that t ∈ P(p(. . . ,A, . . .))\{A}. Let gA[X/t] be a parfactor gA
with all occurrences of X replaced by term t. Then J (Φ) =
J (Φ \ {gA}∪ {gA[X/t], 〈C ∪{X 6= t}, p(. . . ,A, . . .), c(. . .),
Fp, ⊗, CA〉}).

Proposition 3 allows us to split an aggregation parfactor on
a substitution that does not involve the aggregation parameter.
Below we show how to split on a substitution that involves the
aggregation parameter A and a constant. Such an operation
divides the individuals from D(A) : C in two data structures:
an aggregation parfactor and a standard parfactor. We have to
make sure that after splitting c(. . .) is still equal to a ⊗-based
aggregation over the whole D(A) : C.
Proposition 4. Let gA = 〈C, p(. . . ,A, . . .), c(. . .), Fp,⊗, CA〉
be an aggregation parfactor from Φ. Let {A/t} be a substitu-
tion such that (A 6= t) /∈ CA and term t is a constant such that
t ∈ D(A), or a parameter such that t ∈ P(p(. . . ,A, . . .))\{A}.
Let c′(. . .) be an auxiliary parameterized random variable
with the same parameterization and range as c(. . .). Let
CA[A/t] be a set of constraints CA with all occurrences of A re-
placed by term t. Let F1 be a factor from the Cartesian prod-
uct range(p) × range(c′) × range(c) to real numbers. Given
an assignment of values to random variables v, the function
is defined as follows:

F1(v(p(. . . ,A, . . .)),v(c′(. . .)),v(c(. . .))) =
Fp(p(. . . , t, . . .)), if v(p(. . . , t, . . .))⊗v(c′(. . .))

= v(c(. . .))
0, otherwise.

Then J (Φ) = J (Φ \ {gA}∪ {〈C, p(. . . ,A, . . .), c′(. . .), Fp,
⊗, CA∪{A 6= t}〉, 〈C ∪CA[A/t], {p(. . . , t, . . .), c′(. . .), c(. . .)},
F1〉}).

Splitting presented in Proposition 4 corresponds to the ex-
pansion of a counting formula in C-FOVE. The case where
a substitution is of the form {X/A} can be handled in a sim-
ilar fashion as described in Proposition 4. If a substitution
has more than one element, then we split recursively on its
elements using the above propositions.

p(...a1...) p(...a2...) p(...a3...) p(...a4...)

⊗⊗

⊗

⊗
c1,1 c1,2

p(...an...)

⊗

p(...an−1...)

⊗
c1,n/2

c(...) = clog2 n,1

⊗

⊗
c(log2 n)−1,2c(log2 n)−1,1

Figure 2: Decomposed aggregation.

Multiplication
The C-FOVE algorithm multiplies parfactors to enable elim-
ination of parameterized random variables. An aggregation
parfactor can be multiplied by a parfactor on p(. . . ,A, . . .).
Proposition 5. Let gA = 〈C, p(. . . ,A, . . .), c(. . .), Fp, ⊗,
CA〉 be an aggregation parfactor from Φ and g1 = 〈C1,
{p(. . . ,A, . . .)}, F1〉 be a parfactor from Φ such that C1 =
C∪CA. Let g2 = 〈C, p(. . . ,A, . . .), c(. . .), FpF1, ⊗, CA〉.
Then J (Φ) = J (Φ\{gA,g1}∪ {g2}).

We call g2 the product of gA and g1.

Summing out
The C-FOVE algorithm sums out random variables to com-
pute the marginal. Below we show how in some cases we can
sum out p(. . . ,A, . . .) directly from an aggregation parfactor.

When p(. . . ,A, . . .) represents a set of random variables
that can be treated as independent, aggregation decomposes
into a binary tree of applications of the aggregation operator.
Figure 2 illustrates this for a case where n = |D(A) :CA | is a
power of two. The results at each level of the tree are iden-
tical, therefore we need to compute them only once. In the
general case, covered by Proposition 6, we use a square-and-
multiply method [Piṅgala, 200 BC], whose time complexity
is logarithmic in |D(A) :CA |, to eliminate p(. . . ,A, . . .) from
an aggregation parfactor.
Proposition 6. Let gA = 〈C, p(. . . ,A, . . .), c(. . .), Fp, ⊗,
CA〉 be an aggregation parfactor from Φ. Assume that
P(c(. . .)) = P(p(. . . ,A, . . .))\{A} and that set C∪CA is in
normal form. Let S denote a set of random variables rep-
resented by p(. . . ,A, . . .). Assume that no other parfactor
or aggregation parfactor in Φ involves parameterized ran-
dom variables that represent random variables from S. Let
m = blog2 |D(A) :CA |c and bm . . .b0 be the binary representa-
tion of |D(A) :CA |. Let (F0, . . . ,Fm) be a sequence of factors
from range of c to the reals, defined recursively as follows:

F0(x) =
{Fp(x), if x ∈ range(p);

0, otherwise,

Fk(x) =

∑y,z∈range(c)

y⊗z=x
Fk−1(y)Fk−1(z), if bm−k = 0;

∑w,y,z∈range(c)
w⊗y⊗z=x

Fp(w)Fk−1(y)Fk−1(z),

otherwise.

Then JS(Φ) = J (φ \{ga}∪ {〈C,{c(. . .)},Fm〉}).

Proposition 6 does not allow variable c(. . .) in an aggre-
gation parfactor to have extra parameters that are not present
in variable p(. . . ,A, . . .). The C-FOVE algorithm handles ex-
tra parameters by introducing counting formulas on these pa-
rameters. Then it can proceed with standard summation. We
cannot apply the same approach to aggregation parfactors as
newly created counting formulas could have ranges incom-
patible with the range of the aggregation operator. We need
a special summation procedure, described below in Proposi-
tion 7.
Proposition 7. Let gA = 〈C, p(. . . ,A, . . .), c(. . . ,E, . . .), Fp,
⊗, CA〉 be an aggregation parfactor from Φ. Assume that
P(c(. . .))\{E} = P(p(. . . ,A, . . .))\{A}, that set C∪CA is in
normal form. Let S denote a set of random variables rep-
resented by p(. . . ,A, . . .). Assume that no other parfactor
or aggregation parfactor in Φ involves parameterized ran-
dom variables that represent random variables from S. Let
m = blog2 |D(A) :CA |c and bm . . .b0 be the binary representa-
tion of |D(A) :CA |. Let (F0, . . . ,Fm) be a sequence of factors
from range of c to real numbers, defined recursively as fol-
lows:

F0(x) =
{Fp(x), if x ∈ range(p);

0, otherwise,

Fk(x) =

∑y,z∈range(c)

y⊗z=x
Fk−1(y)Fk−1(z), if bm−k = 0;

∑w,y,z∈range(c)
w⊗y⊗z=x

Fp(w)Fk−1(y)Fk−1(z),

otherwise.

Let CE be a set of constraints from C that involve E.
Let F# be a factor from the range of counting formula
#E:CE [c(. . . ,E, . . .)] to real numbers defined as follows:

F#(h()) =
{Fm(x), if ∃x ∈ range(c) h(x) = |D(E) :CE |;

0, otherwise.

Then JS(Φ) =J (φ \{ga}∪ {〈C \CE , {#E:CE [c(. . . ,E, . . .)]},
F#〉}).

The above proposition can be generalized to the cases
where c(. . .) has more than one extra parameter.

If set C∪CA is not in normal form, then |D(A) : CA |
might vary for different ground substitutions to parameters in
p(. . . ,A, . . .) and we will not be able to apply Propositions 6
and 7. We can follow Milch et al. [2008] and bring constraints
in the aggregation parfactor to a normal form by splitting it
on appropriate substitutions. Once the constraints are in nor-
mal form, |D(A) : CA | does not change for different ground
substitutions. The other approach is to compute uniform so-
lution counting partitions [de Salvo Braz et al., 2007] using a
constraint solver and use this information when summing out
p(. . . ,A, . . .).

4.4 Generalized aggregation parfactors
Propositions 6 and 7 require that random variables repre-
sented by p(. . . ,A, . . .) are independent. They are only de-
pendent if they either have a common ancestor in the ground-
ing or a common observed descendant. If during inference we
eliminate the common ancestor or condition on the observed

descendant before we eliminate p(. . . ,A, . . .) through aggre-
gation, we may introduce a counting formula on p(. . . ,A, . . .).
This would prevent us from applying results of Propositions 6
and 7 and performing efficient lifted aggregation.

We need to delay such conditioning and summing out un-
til we eliminate p(. . . ,A, . . .). It requires a generalized ver-
sion of the aggregation parfactor data structure, a septuple
〈C, p(. . . ,A, . . .), c(. . . ,E, . . .), V, Fp∪V , ⊗, CA〉 where V is
a set of context parameterized random variables and Fp∪V is
a factor from the Cartesian product of ranges of parameter-
ized random variables in {p(. . . ,A, . . .)}∪V to the reals. The
factor Fp∪V stores the dependency between p(. . . ,A, . . .) and
context variables.

Generalization of propositions from Sections 4.2 and 4.3 is
straightforward. Proposition 5 has to be generalized so aggre-
gation parfactors can be multiplied by parfactors on variables
other than p(. . . ,A, . . .), and generalized versions of Proposi-
tions 6 and 7 have to manipulate larger factors.

The third experiment from Section 5 involved inference
with generalized aggregation parfactors.

5 Experiments
In our experiments, we investigated how the population size
of parameters and the size of the range of parameterized ran-
dom variables affect inference in the presence of aggregation.

We compared the performance of variable elimination
(VE), variable elimination with the noisy-MAX factoriza-
tion [Dı́ez and Galán, 2003] (VE-FCT), C-FOVE, C-FOVE
with the lifted noisy-MAX factorization described in Sec-
tion 4.2 (C-FOVE-FCT), and C-FOVE with aggregation par-
factors (AC-FOVE). We used Java implementations of the
above algorithms on an Intel Core 2 Duo 2.66GHz proces-
sor with 1GB of memory made available to the JVM.

In the first experiment, we tested the above algorithms
on the model introduced in Example 1 and depicted in Fig-
ure 1. In the second experiment, used a modified ver-
sion of this model, in which range(in j) = range(sub) =
range(substitution) = {0,1,2}, and substitution() is a noisy-
MAX of in j(Player). In both experiments, we measured
the time necessary to compute the marginal of the variable
substitution() using a top-down elimination ordering. We
varied the population size n of the parameter Players from
1 to 100,000.

Figures 3 and 4 show the results of the experiments. The
time complexity for VE is exponential in n, and the algorithm
did not scale as n increased. The time complexity for VE-
FCT is linear in n. In the model with noisy-OR, the time
complexity for C-FOVE is also linear in n, but C-FOVE does
lifted inference and it achieved better results then VE-FCT,
which performs inference at the propositional level. In the
model with noisy-MAX, the time complexity for C-FOVE is
quadratic in n, and C-FOVE was outperformed by VE-FCT.
C-FOVE-FCT and AC-FOVE, for which the time complexity
is logarithmic in n, performed best in both cases (for clarity
we did not show the C-FOVE-FCT performance in Figures 3
and 4). The difference between their performance and the
performance of C-FOVE was apparent even for small popu-
lations in the second experiment , which involved aggregation

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

n = |D(P layer)|

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

n = |D(P layer)|

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE

10
1

10
2

10
0

10
2

10
4

n

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE
C−FOVE−FCT

Figure 3: Performance on the model with noisy-OR aggrega-
tion.

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

n = |D(P layer)|

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

n = |D(P layer)|

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE

10
1

10
2

10
0

10
2

10
4

n

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE
C−FOVE−FCT

Figure 4: Performance on the model with noisy-MAX aggre-
gation.

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

n = |D(P layer)|

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

n = |D(P layer)|

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE

10
1

10
2

10
0

10
2

10
4

n

ti
m

e
[m

s]

VE
VE−FCT
C−FOVE
AC−FOVE
C−FOVE−FCT

Figure 5: Performance on the smoking-friendship model.

over non-binary random variables.
For the third experiment we used an ICL theory [Poole,

2008] from Carbonetto et al. [2009] that explains how people
alter their smoking habits within their social network. Param-
eters of the model were learned from data of smoking and
drug habits among teenagers attending a school in Scotland
[Pearson and Michell, 2000] using methods described by Car-
bonetto et al. [2009]. Given the population size n, the equiv-

alent propositional graphical model has 3n2 + n nodes and
12n2−9n arcs. We varied n from 2 to 140 and for each value,
we computed a marginal probability of a single individual
being a smoker. Figure 5 shows the results of the experi-
ment. VE, VE-FCT and C-FOVE algorithms failed to solve
instances with a population size greater than 8, 10, and 11,
respectively. AC-FOVE was able to handle efficiently much
larger instances and it ran out of memory for a population size
of 159. The AC-FOVE algorithm performed equally to the
C-FOVE-FCT algorithm except for small populations. It is
important to remember that the C-FOVE-FCT algorithm, un-
like AC-FOVE, can only be applied to MAX and MIN-based
aggregation.

6 Conclusions and Future Work
In this paper we demonstrated the use of aggregation par-
factors to represent aggregation in directed first-order prob-
abilistic models, and how aggregation parfactors can be in-
corporated into the C-FOVE algorithm. Theoretical analysis
and empirical tests showed that in some cases, lifted infer-
ence with aggregation parfactors leads to significant gains in
efficiency.

While presented the algorithm can handle a wide range of
aggregation cases, there still exist models that can’t be han-
dled efficiently by lifted inference, for example a “lattice”
structure presented by Poole [2008]. These models pose an
interesting challenge for future research.

To date, all empirical evaluations of lifted inference, in-
cluding the evaluation in this paper, have been performed us-
ing simple first-order probabilistic models. Now we have in-
ference procedures that allow for more comprehensive evalu-
ation of the practical potential of lifted inference.

Acknowledgments
Authors wish to thank Peter Carbonetto, Michael Chiang,
Mark Crowley, Craig Wilson, James Wright, and IJCAI re-
viewers for valuable comments. This work was supported by
NSERC grant to David Poole.

References
[Breese, 1992] Jack S. Breese. Construction of belief and

decision networks. Comput Intell, 8(4):624–647, 1992.
[Buntine, 1994] Wray L. Buntine. Operations for learning

with graphical models. J Artif Intell Res, 2:159–225, 1994.
[Carbonetto et al., 2009] Peter Carbonetto, Jacek Kisyński,

Michael Chiang, and David Poole. Learning a contin-
gently acyclic, probabilistic relational model of a social
network. TR-2009-08, Univ of British Columbia, Dept of
Comp Sci, 2009.

[Chavira et al., 2006] Mark Chavira, Adnan Darwiche, and
Manfred Jaeger. Compiling relational Bayesian networks
for exact inference. Int J Approx Reason, 42(1–2):4–20,
2006.

[De Raedt et al., 2008] Luc De Raedt, Paolo Frasconi, Kris-
tian Kersting, and Stephen H. Muggleton, editors. Proba-
bilistic Inductive Logic Programming. Springer, 2008.

[de Salvo Braz et al., 2007] Rodrigo de Salvo Braz, Eyal
Amir, and Dan Roth. Lifted first-order probabilistic in-
ference. In Lise Getoor and Ben Taskar, ed., Introduction
to Statistical Relational Learning, 433–450. MIT Press,
2007.

[Dı́ez and Galán, 2003] Francisco J. Dı́ez and Severino F.
Galán. Efficient computation for the noisy MAX. Int J
Intell Syst, 18(2):165–177, 2003.

[Dı́ez, 1993] Francisco J Dı́ez. Parameter adjustment in
Bayes networks. The generalized noisy OR-gate. In Proc.
9th UAI, 99–105, 1993.

[Getoor and Taskar, 2007] Lise Getoor and Ben Taskar, ed.,
Introduction to Statistical Relational Learning. MIT Press,
2007.

[Gupta et al., 2007] Rahul Gupta, Ajit A. Diwan, and Sunita
Sarawagi. Efficient inference with cardinality-based clique
potentials. In Proc. 24th ICML, 329–336, 2007.

[Horsch and Poole, 1990] Michael Horsch and David Poole.
A dynamic approach to probabilistic inference using
Bayesian networks. In Proc. 6th UAI, 155–161, 1990.

[Jaeger, 2002] Manfred Jaeger. Relational Bayesian net-
works: a survey. Electron Art Comput Inform Sc, 6, 2002.

[Koller and Pfeffer, 1997] Daphne Koller and Avi Pfeffer.
Object-oriented Bayesian networks. In Proc. 13th UAI,
302–313, 1997.

[Milch et al., 2008] Brian Milch, Luke S. Zettlemoyer, Kris-
tian Kersting, Michael Haimes, and Leslie Pack Kaelbling.
Lifted probabilistic inference with counting formulas. In
Proc. 23rd AAAI, 1062–1068, 2008.

[Pearl, 1986] Judea Pearl. Fusion, propagation and structur-
ing in belief networks. Artif Intell, 29(3):241–288, 1986.

[Pearson and Michell, 2000] Michael Pearson and Lynn
Michell. Smoke Rings: social network analysis of friend-
ship groups, smoking and drug-taking. Drugs: education,
prevention and policy, 7:21–37, 2000.

[Pfeffer and Koller, 2000] Avi Pfeffer and Daphne Koller.
Semantics and inference for recursive probability models.
In Proc. 17th AAAI, 538–544, 2000.

[Piṅgala, 200 BC] Piṅgala. Chandah-sûtra. 200 BC.
[Poole, 2003] David Poole. First-order probabilistic infer-

ence. In Proc. 18th IJCAI, 985–991, 2003.
[Poole, 2008] David Poole. The Independent Choice Logic

and beyond. In Luc De Raedt et al., ed., Probabilistic
Inductive Logic Programming, 222–243. Springer, 2008.

[Savicky and Vomlel, 2007] Peter Savicky and Jiřı́ Vomlel.
Exploiting tensor rank-one decomposition in probabilistic
inference. Kybernetika, 43(5):747–764, 2007.

[Zhang and Poole, 1994] Nevin L. Zhang and David Poole.
A simple approach to Bayesian network computations. In
Proc. 10th AI, 171–178, 1994.

[Zhang and Poole, 1996] Nevin L. Zhang and David Poole.
Exploiting causal independence in Bayesian network in-
ference. J Artif Intell Res, 5:301–328, 1996.

