Logical Argumentation, Abduction and Bayesian Decision Theory: A Bayesian Approach to Logical Arguments and its Application to Legal Evidential Reasoning

David Poole

University of British Columbia

Knowledge representation, logic, decision theory.

- Independent Choice Logic
 - > Logic programming + arguments
 - > Abduction
 - Belief networks + first-order rule-structured conditional probabilities
- Peter Tillers' Example

Knowledge Representation

Find compact / natural representations

Exploit features of representation for computational gain.

Tradeoff representational adequacy, efficient (approximate) inference and learnability

Normative Traditions

- Semantics (symbols have meaning)
- > Sound and complete proof procedures
- Quantification over variables (relations amongst multiple individuals)

Decision Theory

- > Tradeoffs under uncertainty
- Probabilities and utilities

Independent Choice Logic

- C, the choice space is a set of alternatives.
 An alternative is a set of atomic choices.
 An atomic choice is a ground atomic formula.
 An atomic choice can only appear in one alternative.
- F, the facts is an acyclic logic program.
 No atomic choice unifies with the head of a rule.
- \triangleright *P*⁰ a probability distribution over alternatives:

$$\forall A \in \mathbf{C} \ \sum_{a \in A} P_0(a) = 1.$$

Meaningless Example

$$\mathbf{C} = \{\{c_1, c_2, c_3\}, \{b_1, b_2\}\}\$$

$$\mathbf{F} = \{f \leftarrow c_1 \land b_1, f \leftarrow c_3 \land b_2, \\ d \leftarrow c_1, d \leftarrow \sim c_2 \land b_1, \\ e \leftarrow f, e \leftarrow \sim d\}\$$

$$P_0(c_1) = 0.5 P_0(c_2) = 0.3 P_0(c_3) = 0.2$$

$$P_0(b_1) = 0.9 P_0(b_2) = 0.1$$

Semantics of ICL

A total choice is a set containing exactly one element of each alternative in C.

For each total choice τ there is a possible world w_{τ} .

Proposition f is true in w_{τ} (written $w_{\tau} \models f$) if f is true in the (unique) stable model of $\mathbf{F} \cup \tau$.

The probability of a possible world w_{τ} is

$$\prod_{a\in\tau}P_0(a).$$

The probability of a proposition f is the sum of the probabilities of the worlds in which f is true.

Meaningless Example: Semantics

There are 6 possible worlds:

$$w_{1} \models c_{1} \quad b_{1} \quad f \quad d \quad e \qquad P(w_{1}) = 0.45$$

$$w_{2} \models c_{2} \quad b_{1} \quad \sim f \quad \sim d \quad e \qquad P(w_{2}) = 0.27$$

$$w_{3} \models c_{3} \quad b_{1} \quad \sim f \quad d \quad \sim e \qquad P(w_{3}) = 0.18$$

$$w_{4} \models c_{1} \quad b_{2} \quad \sim f \quad d \quad \sim e \qquad P(w_{4}) = 0.05$$

$$w_{5} \models c_{2} \quad b_{2} \quad \sim f \quad \sim d \quad e \qquad P(w_{5}) = 0.03$$

$$w_{6} \models c_{3} \quad b_{2} \quad f \quad \sim d \quad e \qquad P(w_{6}) = 0.02$$

$$P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77$$

Assumption-based reasoning

Siven background knowledge / facts F and assumables / possible hypotheses H,

An explanation of g is a set D of assumables such that $F \cup D$ is consistent $F \cup D \models g$

abduction is when g is given and you want D

default reasoning / prediction is when g is unknown

Abductive Characterization of ICL

- > The atomic choices are assumable.
- > The elements of an alternative are mutually exclusive.

Suppose the rules are disjoint

rules for
$$a \begin{cases} a \leftarrow b_1 \\ \cdots \\ a \leftarrow b_k \end{cases}$$
 $b_i \wedge b_j$ for $i \neq j$ can't be true

$$P(g) = \sum_{\substack{E \text{ is a minimal explanation of } g}} P(E)$$

$$P(E) = \prod_{\substack{h \in E}} P_0(h)$$

Conditional Probabilities

$$P(g|e) = \frac{P(g \land e)}{P(e)} \quad \longleftarrow \text{ explain } g \land e$$

$$\longleftarrow \text{ explain } e$$

Given evidence e, explain e then try to explain g from these explanations.

The explanations of $g \wedge e$ are the explanations of e extended to also explain g.

Probabilistic conditioning is abduction + prediction.

(Bayesian) Belief Networks

Graphical representation of dependence.

- > DAGs with nodes representing random variables.
- > Arcs from parents of a node into the node.
- \blacktriangleright If b_1, \dots, b_k are the parents of a, we have an associated conditional probability table

 $P(a|b_1,\cdots,b_k)$

Doesn't specify how a variable depends on its parents.

Belief Network for Overhead Projector

Belief networks as logic programs

projector_lamp_on \leftarrow *power_in_projector* ∧ *lamp_works* \land *projector_working_ok.* ← atomic choice projector_lamp_on \leftarrow *power_in_projector* ∧ \sim lamp_works \wedge working_with_faulty_lamp.

Probabilities of hypotheses

 $P_0(projector_working_ok)$

= P(projector_lamp_on |
 power_in_projector ∧ lamp_works)
 — provided as part of belief network

Mapping Belief networks into ICL

Translated into the rules

$$a(V) \leftarrow b_1(V_1) \wedge \cdots \wedge b_k(V_k) \wedge h(V, V_1, \ldots, V_k)$$

and the alternatives

 $\forall v_1 \cdots \forall v_k \{h(v, v_1, \dots, v_k) | v \in domain(a)\} \in \mathbf{C}$

Belief networks and the ICL

- The probabilities for the belief network and the ICL translation are identical.
- In the translation, the ICL requires the same number of probabilities as the belief network.
- Often the ICL theory is more compact than the corresponding conditional probability table.
- The probabilistic part of the ICL can be seen as a representation for the independence of belief networks.

What can we learn from the mapping?

ICL adds

- rule-structured conditional probability tables
- Iogical variables and negation as failure in rules
- > arbitrary computation in the network
- choices by other agents
- > algorithms
- Belief networks add
- ► theory of causation
- > algorithms
- ▶ ties to MDPs, Neural networks, ...

Representing a domain in the ICL

- Axiomatize background knowledge causally
- > Hypothesize what is going on in the world
- Condition on the observations of the specific case
 - > Most observations have trivial explanations
 - Explanations with coherent story become more likely than those that assume independent coincidences

Tillers' Example: Observations

says(peter, wentto(peter, hvstore)) Peter says that he went to the Happy Valley Store. says(peter, clerk_at(harry, hvstore)) Peter says Harry was a clerk at the Happy Valley Store says(peter, vicious_sob(harry)) Peter says that Harry is a vicious SOB. says(peter, observed(peter, blinding_flash)) Peter says that he observed a blinding flash. says(peter, says(doctor, shot(peter))) Peter said that the doctor said he was shot. says(peter, says(newspaper, disappeared(harry))) Peter said that the newspaper said Harry disappeared.

 $says(P, F) \leftarrow thinks_true(P, F) \land$ honest(P) \wedge tr h(P, F). $says(P, F) \leftarrow thinks_true(P, F) \land$ $dishonest(P) \land$ tr h(P, F).

random([honest(P) : 0.999, dishonest(P) : 0.001]). $random([tr_h(P, F) : 0.9999, untr_h(P, F) : 0.0001]).$ $random([tr_d(P, F) : 0.998, untr_d(P, F) : 0.002]).$

Peter May be Mistaken

 $thinks_true(P, F) \leftarrow true(F) \land$ $notmistaken_t(P, F).$ $thinks_true(P, F) \leftarrow false(F) \land$ $mistaken_f(P, F).$

 $random([mistaken_t(P, F) : 0.02,$ $notmistaken_t(P, F) : 0.98]).$ $random([mistaken_f(P, F) : 0.06,$ $notmistaken_f(P, F) : 0.94]).$

Why did he disappear?

 $true(disappeared(X)) \leftarrow$ *left_for_no_reason(X)*. $true(disappeared(X)) \leftarrow$ disappeared_when_criminal(X) \land $committed_crime(X).$ $random([disappeared_when_criminal(X) : 0.8,$ $stayed_when_criminal(X) : 0.2]).$ *random*([*left_for_no_reason*(*P*) : 0.001, $open_in_whereabouts(P) : 0.999]).$

Shooting Explains Multiple Propositions

 $true(shot(P)) \leftarrow$ shot(X, P). $true(observed(P, blinding_flash)) \leftarrow$ picture taken(P). $true(observed(P, blinding_flash)) \leftarrow$ shot(X, P). $committed_crime(X) \leftarrow$ shot(X, P). $random([picture_taken(X) : 0.06, no_picture(X) : 0.94]$

 $shot(X, P) \leftarrow$

means_opportunity_to_shoot(X, P) \land motive_to_shoot(X, P) \land $actually_shot(X, P).$ means_opportunity_to_shoot(X, P) \leftarrow $at(X, L) \wedge at(P, L).$ $at(X, L) \leftarrow true(clerk_at(X, L)).$ $at(X, L) \leftarrow true(wentto(X, L)).$ $random([actually_shot(X, P) : 0.01,$ $didnt_actually_shoot(X, P) : 0.99]).$

Simplifications

> Populations

Subtleties of Language

- ICL is a representation that combines logic and Bayesian decision theory.
- Inference is by variable elimination (marginalization, summing out a variable) and/or by enumerating the most likely explanations and bounding the error.
- Bayesian conditioning (abduction) gets dynamics of reasoning right.
- First-order rules let us reason about multiple individuals.
- Still many problems.