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Overview

➤ Knowledge representation, logic, decision theory.

➤ Independent Choice Logic

➣ Logic programming + arguments

➣ Abduction

➣ Belief networks + first-order rule-structured

conditional probabilities

➤ Peter Tillers’ Example
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Knowledge Representation

problem

representation

solution

output

solve

compute

informal

formal
represent interpret

➤ Find compact / natural representations

➤ Exploit features of representation for computational gain.

➤ Tradeoff representational adequacy, efficient

(approximate) inference and learnability

© David Poole 2000

☞

☞

http://www.cs.ubc.ca/spider/poole/


Cardozo Conference on AI and Judicial Proof, April 2000 Page 4

Normative Traditions

➤ Logic

➣ Semantics (symbols have meaning)

➣ Sound and complete proof procedures

➣ Quantification over variables (relations amongst

multiple individuals)

➤ Decision Theory

➣ Tradeoffs under uncertainty

➣ Probabilities and utilities
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Independent Choice Logic

➤ C, the choice spaceis a set of alternatives.

An alternative is a set of atomic choices.

An atomic choiceis a ground atomic formula.

An atomic choice can only appear in one alternative.

➤ F, the facts is an acyclic logic program.

No atomic choice unifies with the head of a rule.

➤ P0 a probability distribution over alternatives:

∀A ∈ C
∑
a∈A

P0(a) = 1.
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}
F = { f ← c1 ∧ b1, f ← c3 ∧ b2,

d ← c1, d ← ∼c2 ∧ b1,

e ← f , e ← ∼d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2

P0(b1) = 0.9 P0(b2) = 0.1
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Semantics of ICL
➤ A total choiceis a set containing exactly one element of

each alternative inC.

➤ For each total choiceτ there is apossible worldwτ .

➤ Propositionf is true in wτ (writtenwτ |= f ) if f is true

in the (unique) stable model ofF ∪ τ .

➤ The probability of a possible worldwτ is∏
a∈τ

P0(a).

➤ The probability of a propositionf is the sum of the

probabilities of the worlds in whichf is true.
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Meaningless Example: Semantics

There are 6 possible worlds:

w1 |= c1 b1 f d e P(w1) = 0.45

w2 |= c2 b1 ∼f ∼d e P(w2) = 0.27

w3 |= c3 b1 ∼f d ∼e P(w3) = 0.18

w4 |= c1 b2 ∼f d ∼e P(w4) = 0.05

w5 |= c2 b2 ∼f ∼d e P(w5) = 0.03

w6 |= c3 b2 f ∼d e P(w6) = 0.02

P(e) = 0.45+ 0.27+ 0.03+ 0.02 = 0.77
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Assumption-based reasoning

➤ Given background knowledge / factsF and

assumables / possible hypothesesH ,

➤ An explanationof g is a setD of assumables such that

F ∪ D is consistent

F ∪ D |= g

➤ abductionis wheng is given and you wantD

➤ default reasoning / predictionis wheng is unknown
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Abductive Characterization of ICL
➤ The atomic choices are assumable.

➤ The elements of an alternative are mutually exclusive.

Suppose the rules are disjoint

rules fora




a ← b1
. . .

a ← bk

bi ∧ bj for i 6= j can’t be true

P(g) =
∑

E is a minimal explanation ofg
P(E)

P(E) =
∏
h∈E

P0(h)
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Conditional Probabilities

P(g|e) = P(g ∧ e)

P(e)

←− explaing ∧ e

←− explaine

➤ Given evidencee, explaine then try to explaing from

these explanations.

➤ The explanations ofg ∧ eare the explanations ofe

extended to also explaing.

➤ Probabilistic conditioning is abduction + prediction.
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(Bayesian) Belief Networks

➤ Graphical representation of dependence.

➤ DAGs with nodes representing random variables.

➤ Arcs from parents of a node into the node.

➤ If b1, · · · , bk are the parents ofa, we have an associated

conditional probability table

P(a|b1, · · · , bk)

➤ Doesn’t specify how a variable depends on its parents.
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Belief Network for Overhead Projector

projector_lamp_on

screen_lit_up

lamp_works

projector_switch_onpower_in_wire

power_in_building projector_plugged_in

mirror_working

room_light_on

light_switch_on

alan_reading_book

ray_says_"screen is dark"

ray_is_awake

power_in_projector
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Belief networks as logic programs

projector_lamp_on ←
power_in_projector∧
lamp_works∧
projector_working_ok. ←− atomic choice

projector_lamp_on ←
power_in_projector∧
∼lamp_works∧
working_with_faulty_lamp.
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Probabilities of hypotheses

P0(projector_working_ok)

= P(projector_lamp_on |
power_in_projector∧ lamp_works)

— provided as part of belief network
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Mapping Belief networks into ICL

b1 bk

a

...

➤ Translated into the rules

a(V) ← b1(V1) ∧ · · · ∧ bk(Vk) ∧ h(V, V1, . . . , Vk).

➤ and the alternatives

∀v1 · · · ∀vk{h(v, v1, . . . , vk)|v ∈ domain(a)} ∈ C
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Belief networks and the ICL

➤ The probabilities for the belief network and the ICL

translation are identical.

➤ In the translation, the ICL requires the same number of

probabilities as the belief network.

➤ Often the ICL theory is more compact than the

corresponding conditional probability table.

➤ The probabilistic part of the ICL can be seen as a

representation for the independence of belief networks.
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What can we learn from the mapping?

ICL adds

➤ rule-structured conditional probability tables

➤ logical variables and negation as failure in rules

➤ arbitrary computation in the network

➤ choices by other agents

➤ algorithms

Belief networks add

➤ theory of causation

➤ algorithms

➤ ties to MDPs, Neural networks, …
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Representing a domain in the ICL

➤ Axiomatize background knowledge causally

➤ Hypothesize what is going on in the world

➤ Condition on the observations of the specific case

➣ Most observations have trivial explanations

➣ Explanations with coherent story become more likely

than those that assume independent coincidences
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Tillers’ Example: Observations
➤ says(peter, wentto(peter, hvstore))

Peter says that he went to the Happy Valley Store.
➤ says(peter, clerk_at(harry, hvstore))

Peter says Harry was a clerk at the Happy Valley Store
➤ says(peter, vicious_sob(harry))

Peter says that Harry is a vicious SOB.
➤ says(peter, observed(peter, blinding_flash))

Peter says that he observed a blinding flash.
➤ says(peter, says(doctor, shot(peter)))

Peter said that the doctor said he was shot.
➤ says(peter, says(newspaper, disappeared(harry)))

Peter said that the newspaper said Harry disappeared.
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Witness Honesty

says(P, F) ← thinks_true(P, F) ∧
honest(P) ∧
tr_h(P, F).

says(P, F) ← thinks_true(P, F) ∧
dishonest(P) ∧
tr_h(P, F).

random([honest(P) : 0.999, dishonest(P) : 0.001]).
random([tr_h(P, F) : 0.9999, untr_h(P, F) : 0.0001]).
random([tr_d(P, F) : 0.998, untr_d(P, F) : 0.002]).
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Peter May be Mistaken

thinks_true(P, F) ← true(F) ∧
notmistaken_t(P, F).

thinks_true(P, F) ← false(F) ∧
mistaken_f (P, F).

random([mistaken_t(P, F) : 0.02,

notmistaken_t(P, F) : 0.98]).
random([mistaken_f (P, F) : 0.06,

notmistaken_f (P, F) : 0.94]).
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Why did he disappear?

true(disappeared(X)) ←
left_for_no_reason(X).

true(disappeared(X)) ←
disappeared_when_criminal(X) ∧
committed_crime(X).

random([disappeared_when_criminal(X) : 0.8,

stayed_when_criminal(X) : 0.2]).
random([left_for_no_reason(P) : 0.001,

open_in_whereabouts(P) : 0.999]).
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Shooting Explains Multiple Propositions

true(shot(P)) ←
shot(X, P).

true(observed(P, blinding_flash)) ←
picture_taken(P).

true(observed(P, blinding_flash)) ←
shot(X, P).

committed_crime(X) ←
shot(X, P).

random([picture_taken(X) : 0.06, no_picture(X) : 0.94]).
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Explaining whyX shotP

shot(X, P) ←
means_opportunity_to_shoot(X, P) ∧
motive_to_shoot(X, P) ∧
actually_shot(X, P).

means_opportunity_to_shoot(X, P) ←
at(X, L) ∧ at(P, L).

at(X, L) ← true(clerk_at(X, L)).

at(X, L) ← true(wentto(X, L)).

random([actually_shot(X, P) : 0.01,

didnt_actually_shoot(X, P) : 0.99]).
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Simplifications

➤ Reasonable probabilities

➤ Time

➤ Modalities

➤ Populations

➤ Subtleties of Language

➤ Utilities

➤ …
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Conclusions

➤ ICL is a representation that combines logic and Bayesian

decision theory.

➤ Inference is by variable elimination (marginalization,

summing out a variable) and/or by enumerating the most

likely explanations and bounding the error.

➤ Bayesian conditioning (abduction) gets dynamics of

reasoning right.

➤ First-order rules let us reason about multiple individuals.

➤ Still many problems.
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