Logical Argumentation, Abduction

 and Bayesian Decision Theory: A Bayesian Approach to LogicalArguments and its Application to Legal Evidential Reasoning

David Poole

University of British Columbia

Overview

$>$ Knowledge representation, logic, decision theory.
> Independent Choice Logic
$>$ Logic programming + arguments
$>$ Abduction
$>$ Belief networks + first-order rule-structured conditional probabilities
> Peter Tillers' Example

Knowledge Representation

problem

solve
represent
interpret informal
formal

output

$>$ Find compact / natural representations
$>$ Exploit features of representation for computational gain.
> Tradeoff representational adequacy, efficient (approximate) inference and learnability

Normative Traditions

Logic

$>$ Semantics (symbols have meaning)
$>$ Sound and complete proof procedures
$>$ Quantification over variables (relations amongst multiple individuals)

Decision Theory

$>$ Tradeoffs under uncertainty
$>$ Probabilities and utilities

Independent Choice Logic

$>\mathbf{C}$, the choice space is a set of alternatives.
An alternative is a set of atomic choices.
An atomic choice is a ground atomic formula.
An atomic choice can only appear in one alternative.
$>\mathbf{F}$, the facts is an acyclic logic program.
No atomic choice unifies with the head of a rule.
$>P_{0}$ a probability distribution over alternatives:

$$
\forall A \in \mathbf{C} \sum_{a \in A} P_{0}(a)=1
$$

Meaningless Example

$$
P_{0}\left(c_{1}\right)=0.5 \quad P_{0}\left(c_{2}\right)=0.3 \quad P_{0}\left(c_{3}\right)=0.2
$$

$$
P_{0}\left(b_{1}\right)=0.9 \quad P_{0}\left(b_{2}\right)=0.1
$$

$$
\begin{aligned}
& \mathbf{C}=\left\{\left\{c_{1}, c_{2}, c_{3}\right\},\left\{b_{1}, b_{2}\right\}\right\} \\
& \mathbf{F}=\left\{f \leftarrow c_{1} \wedge b_{1}, \quad f \leftarrow c_{3} \wedge b_{2},\right. \\
& d \leftarrow c_{1}, \quad d \leftarrow \sim c_{2} \wedge b_{1}, \\
& e \leftarrow f, \quad e \leftarrow \sim d\}
\end{aligned}
$$

Semantics of ICL

$>$ A total choice is a set containing exactly one element of each alternative in \mathbf{C}.
$>$ For each total choice τ there is a possible world w_{τ}.
$>$ Proposition f is true in $w_{\tau}\left(\right.$ written $w_{\tau} \models f$) if f is true in the (unique) stable model of $\mathbf{F} \cup \tau$.
$>$ The probability of a possible world w_{τ} is

$$
\prod_{a \in \tau} P_{0}(a)
$$

The probability of a proposition f is the sum of the probabilities of the worlds in which f is true.

Meaningless Example: Semantics

There are 6 possible worlds:
$w_{1} \models c_{1} \quad b_{1} \quad f \quad d \quad e \quad P\left(w_{1}\right)=0.45$
$w_{2} \vDash c_{2} \quad b_{1} \quad \sim f \quad \sim d \quad e \quad P\left(w_{2}\right)=0.27$
$w_{3} \vDash c_{3} \quad b_{1} \quad \sim f \quad d \quad \sim e \quad P\left(w_{3}\right)=0.18$
$w_{4} \vDash c_{1} \quad b_{2} \quad \sim f \quad d \quad \sim e \quad P\left(w_{4}\right)=0.05$
$w_{5} \vDash c_{2} \quad b_{2} \quad \sim f \quad \sim d \quad e \quad P\left(w_{5}\right)=0.03$
$w_{6} \vDash c_{3} \quad b_{2} \quad f \quad \sim d \quad e \quad P\left(w_{6}\right)=0.02$
$P(e)=0.45+0.27+0.03+0.02=0.77$

Assumption-based reasoning

* Given background knowledge / facts F and assumables / possible hypotheses H,
> An explanation of g is a set D of assumables such that $F \cup D$ is consistent $F \cup D \models g$
$>$ abduction is when g is given and you want D
default reasoning / prediction is when g is unknown

Abductive Characterization of ICL

$>$ The atomic choices are assumable.
$>$ The elements of an alternative are mutually exclusive.
Suppose the rules are disjoint

$$
\text { rules for } a\left\{\begin{array}{l}
a \leftarrow b_{1} \\
\cdots \\
a \leftarrow b_{k}
\end{array} \quad b_{i} \wedge b_{j} \text { for } i \neq j\right. \text { can't be true }
$$

$$
P(g)=\quad \sum \quad P(E)
$$

E is a minimal explanation of g

$$
P(E)=\prod_{h \in E} P_{0}(h)
$$

Conditional Probabilities

$$
P(g \mid e)=\frac{P(g \wedge e)}{P(e)} \longleftarrow \text { explain } g \wedge e
$$

Given evidence e, explain e then try to explain g from these explanations.

The explanations of $g \wedge e$ are the explanations of e extended to also explain g.

Probabilistic conditioning is abduction + prediction.

(Bayesian) Belief Networks

$>$ Graphical representation of dependence.
$>$ DAGs with nodes representing random variables.
$>$ Arcs from parents of a node into the node.
$>$ If b_{1}, \cdots, b_{k} are the parents of a, we have an associated conditional probability table

$$
P\left(a \mid b_{1}, \cdots, b_{k}\right)
$$

D Doesn't specify how a variable depends on its parents.

Belief Network for Overhead Projector

Belief networks as logic programs

projector_lamp_on \leftarrow
power_in_projector \wedge
lamp_works \wedge
projector_working_ok. \longleftarrow atomic choice projector_lamp_on \leftarrow
power_in_projector \wedge
~lamp_works \wedge
working_with_faulty_lamp.

Probabilities of hypotheses

$P_{0}($ projector_working_ok)
$=P($ projector_lamp_on \mid
power_in_projector \wedge lamp_works)

- provided as part of belief network

Mapping Belief networks into ICL

$>$ Translated into the rules

$$
a(V) \leftarrow b_{1}\left(V_{1}\right) \wedge \cdots \wedge b_{k}\left(V_{k}\right) \wedge h\left(V, V_{1}, \ldots, V_{k}\right)
$$

$>$ and the alternatives

$$
\forall v_{1} \ldots \forall v_{k}\left\{h\left(v, v_{1}, \ldots, v_{k}\right) \mid v \in \operatorname{domain}(a)\right\} \in \mathbf{C}
$$

Belief networks and the ICL

> The probabilities for the belief network and the ICL translation are identical.

- In the translation, the ICL requires the same number of probabilities as the belief network.
$>$ Often the ICL theory is more compact than the corresponding conditional probability table.
> The probabilistic part of the ICL can be seen as a representation for the independence of belief networks.

ICL adds
rule-structured conditional probability tables
> logical variables and negation as failure in rules
$>$ arbitrary computation in the network
> choices by other agents
$>$ algorithms
Belief networks add
$>$ theory of causation
> algorithms
ties to MDPs, Neural networks, ...

Representing a domain in the ICL

- Axiomatize background knowledge causally

Hypothesize what is going on in the world
$>$ Condition on the observations of the specific case
$>$ Most observations have trivial explanations

- Explanations with coherent story become more likely than those that assume independent coincidences

Tillers' Example: Observations

$>\operatorname{says}($ peter, wentto(peter, hvstore))
Peter says that he went to the Happy Valley Store.
$>\operatorname{says}($ peter, clerk_at(harry, hvstore))
Peter says Harry was a clerk at the Happy Valley Store
$>\operatorname{says}($ peter, vicious_sob(harry))
Peter says that Harry is a vicious SOB.
$>\operatorname{says}($ peter, observed(peter, blinding_flash))
Peter says that he observed a blinding flash.
>
says(peter, $\operatorname{says(doctor,~shot(peter)))~}$
Peter said that the doctor said he was shot.
$>\operatorname{says}($ peter, says(newspaper, disappeared(harry)))
Peter said that the newspaper said Harry disappeared.

Witness Honesty

$\operatorname{says}(P, F) \quad \leftarrow \quad$ thinks_true $(P, F) \wedge$ honest $(P) \wedge$

$$
t r_{-} h(P, F) \text {. }
$$

$\operatorname{says}(P, F) \leftarrow \quad$ thinks_true $(P, F) \wedge$ dishonest $(P) \wedge$

$$
t r _h(P, F) \text {. }
$$

random $([\operatorname{honest}(P): 0.999$, dishonest $(P): 0.001])$. random $\left(\left[\operatorname{tr}_{_} h(P, F): 0.9999\right.\right.$, untr_$\left.\left._{_} h(P, F): 0.0001\right]\right)$. random $\left(\left[\operatorname{tr}_{_} d(P, F): 0.998\right.\right.$, untr_d $\left.\left._{-} d(P, F): 0.002\right]\right)$.

Peter May be Mistaken

thinks_true $(P, F) \leftarrow \operatorname{true}(F) \wedge$ notmistaken_t (P, F).
thinks_true $(P, F) \leftarrow$ false $(F) \wedge$ mistaken $f(P, F)$.
random $\left(\left[m i s t a k e n _t(P, F): 0.02\right.\right.$, notmistaken_t $(P, F): 0.98])$. random $([$ mistaken $f(P, F): 0.06$, notmistaken_f($P, F): 0.94])$.

Why did he disappear?

true $($ disappeared $(X)) \leftarrow$
left_for_no_reason (X).
true $($ disappeared $(X)) \leftarrow$
disappeared_when_criminal $(X) \wedge$ committed_crime (X).
random([disappeared_when_criminal (X) : 0.8, stayed_when_criminal $(X): 0.2])$.
random([left_for_no_reason (P) : 0.001,
open_in_whereabouts $(P): 0.999])$.

Shooting Explains Multiple Propositions

$\operatorname{true}(\operatorname{shot}(P)) \leftarrow$
$\operatorname{shot}(X, P)$.
true $($ observed $(P$, blinding_flash $)) \leftarrow$ picture_taken (P).
true(observed $(P$, blinding_flash $)) \leftarrow$

$$
\operatorname{shot}(X, P) .
$$

committed_crime $(X) \leftarrow$

$$
\operatorname{shot}(X, P)
$$

random $([$ picture_taken $(X): 0.06$, no_picture $(X): 0.94]$

Explaining why X shot P

$\operatorname{shot}(X, P) \leftarrow$
means_opportunity_to_shoot $(X, P) \wedge$ motive_to_shoot $(X, P) \wedge$ actually_shot (X, P).
means_opportunity_to_shoot $(X, P) \leftarrow$ $a t(X, L) \wedge a t(P, L)$.
$a t(X, L) \leftarrow t r u e($ clerk_at $(X, L))$.
$\operatorname{at}(X, L) \leftarrow \operatorname{true}($ wentto $(X, L))$.
random ([actually_shot $(X, P): 0.01$, didnt_actually_shoot $(X, P): 0.99])$.

Simplifications

>Reasonable probabilities
$>$ Time
$>$ Modalities
> Populations
$>$ Subtleties of Language
Utilities
$>\ldots$

Conclusions

$>\mathrm{ICL}$ is a representation that combines logic and Bayesian decision theory.
$>$ Inference is by variable elimination (marginalization, summing out a variable) and/or by enumerating the most likely explanations and bounding the error.

B Bayesian conditioning (abduction) gets dynamics of reasoning right.
> First-order rules let us reason about multiple individuals.
$>$ Still many problems.

