
Computational Intelligence Chapter 8, Lecture 4, Page 1

Planning

Given

• an initial world description

• a description of available actions

• a goal

a plan is a sequence of actions that will achieve the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 4, Page 2

Example Planning

If you want a plan to achieve Rob holding the keyk1 and

being ato103, you can issue the query

?carrying(rob, k1, S) ∧ at(rob, o103, S).

This has an answer

S= do(move(rob, mail, o103),

do(pickup(rob, k1),

do(move(rob, o103, mail),

do(move(rob, o109, o103), init)))).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 4, Page 3

Forward Planner

• Search in the state-space graph, where the nodes

represent states and the arcs represent actions.

• Search from initial state to a state that satisfies the goal.

• A complete search strategy (e.g.,A∗ or iterative

deepening) is guaranteed to find a solution.

• Branching factor is the number of legal actions. Path

length is the number of actions to achieve the goal.

• You usually can’t do backward planning in the state

space, as the goal doesn’t uniquely specify a state.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 8, Lecture 4, Page 4

Planning as Resolution

• Idea: backward chain on the situation calculus rules or

the situation calculus axiomatization of STRIPS.

• A complete search strategy (e.g.,A∗ or iterative

deepening) is guaranteed to find a solution.

• When there is a solution to the query with situation

S= do(A, S1), actionA is the last action in the plan.

• You can virtually always use a frame axiom so that the

search space is largely unconstrained by the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 4, Page 5

Goal-directed searching

• Given a goal, you would like to consider only those

actions that actually achieve it.

• Example:

?carrying(rob, parcel, S) ∧ in(rob, lab2, S).

the last action needed is irrelevant to the left subgoal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 5, Page 1

STRIPS Planner
• Divide and conquer: to create a plan to achieve a

conjunction of goals, create a plan to achieve one goal,

and then create a plan to achieve the rest of the goals.

• To achieve a list of goals:

choose one of them to achieve.

If it is not already achieved

? choose an action that makes the goal true

? achieve the preconditions of the action

? carry out the action

achieve the rest of the goals.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 5, Page 2

STRIPS Planner Code

achieve_all(Gs, W1, W2) is true ifW2 is the world resulting%%%%%%%%

from achieving every element of the listGsof goals from%%%%%%%%%

the worldW1.%%

achieve_all([], W0, W0).

achieve_all(Goals, W0, W2) ←
remove(G, Goals, Rem_Gs) ∧
achieve(G, W0, W1) ∧
achieve_all(Rem_Gs, W1, W2).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 5, Page 3

achieve(G, W0, W1) is true ifW1 is the resulting world%%%%%%%

after achieving goalG from the worldW0.%%%%%%

achieve(G, W, W) ←
holds(G, W).

achieve(G, W0, W1) ←
clause(G, B) ∧
achieve_all(B, W0, W1).

achieve(G, W0, do(Action, W1)) ←
achieves(Action, G) ∧
preconditions(Action, Pre) ∧
achieve_all(Pre, W0, W1).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 5, Page 4

Undoing Achieved Goals

Example: consider trying to achieve

[carrying(rob, parcel), sitting_at(rob, lab2)]
Example: consider trying to achieve

[sitting_at(rob, lab2), carrying(rob, parcel)]
• The STRIPS algorithm, as presented, is unsound.

• Achieving one subgoal may undo already achieved

subgoals.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 5, Page 5

Fixing the STRIPS Algorithm

Two ideas to make STRIPS sound:

• Protect subgoalsso that, once achieved, until they are

needed, they cannot be undone. Letremovereturn

different choices.

• Reachieve subgoalsthat have been undone.

Protecting subgoals makes STRIPS incomplete.

Reachieving subgoals finds longer plans than

necessary.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 5, Page 6

Does protecting always work?

• Example Suppose the robot can only carry one item at a

time. Consider the goal:

sitting_at(rob, lab2) ∧ carrying(rob, parcel)

• We cannot consider the subgoals in isolation!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 6, Page 1

Regression

• Idea: don’t solve one subgoal by itself, but keep track of

all subgoals that must be achieved.

• Given a set of goals:

If they all hold in the initial state, return the empty

plan

Otherwise, choose an actionA that achieves one of

the subgoals. This will be the last action in the plan.

Determine what must be true immediately beforeA

so that all of the goals will be true immediately after.

Recursively solve these new goals.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 6, Page 2

Regression as Path Finding
• The nodes are sets of goals. Arcs correspond to actions.

• A node labeled with goal setG has a neighbor for each

actionA that achieves one of the goals inG.

• The neighbor corresponding to actionA is the node with

the goalsGA that must be true immediately before the

actionA so that all of the goals inG are true immediately

afterA. GA is the weakest preconditionfor actionA and

goal setG.

• Search can stop when you have a node where all the

goals are true in the initial state.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 6, Page 3

Weakest preconditions

wp(A, GL, WP) is true ifWP is the weakest precondition

that must occur immediately before actionA so every element

of goal listGL is true immediately afterA.

For the STRIPS representation (with all predicates primitive):

• wp(A, GL, WP) is falseif any element ofGL is on delete

list of actionA.

• OtherwiseWP is

preconds(A) ∪ {G ∈ GL : G 6∈ add_list(A)}.
wherepreconds(A) is the list of preconditions of actionA

andadd_list(A) is the add list of actionA.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 6, Page 4

Weakest Precondition Example

The weakest precondition for

[sitting_at(rob, lab2), carrying(rob, parcel)]
to be true aftermove(rob, Pos, lab2) is that

[autonomous(rob),

adjacent(Pos, lab2),

sitting_at(rob, Pos),

carrying(rob, parcel)]
is true immediately before the action.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 6, Page 5

A Regression Planner
% solve(GL, W) is true if every element of goal listGL is true
% in worldW.

solve(GoalSet, init) ←
holdsall(GoalSet, init).

solve(GoalSet, do(Action, W)) ←
consistent(GoalSet) ∧
choose_goal(Goal, GoalSet) ∧
choose_action(Action, Goal) ∧
wp(Action, GoalSet, NewGoalSet) ∧
solve(NewGoalSet, W).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 6, Page 6

Regression Search Space Example

[carrying(rob,parcel), sitting_at(rob,lab2)]

pickup(rob,parcel)
move(rob,P,lab2)

[sitting_at(parcel,lab2), sitting_at(rob,lab2)]

[carrying(rob,parcel), sitting_at(rob,P), adjacent(P,lab2)]
=

[carrying(rob,parcel), sitting_at(rob,o103), unlocked(door1)]

[carrying(rob,parcel), sitting_at(rob,o103), carrying(rob,k1)]

unlock(rob,door1)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

