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Equality

• Sometimes two terms denote the same individual.

• Example: Clark Kent & superman. 4× 4 & 11 + 5.

The projector we used last Friday & this projector.

• Ground termt1 equals ground termt2, written t1 = t2,

is true in interpretationI if t1 andt2 denote the same

individual in interpretationI .

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 7, Lecture 1, Page 2

Equality doesn’t mean similarity

chair 1 chair 2

chair1 6= chair2

chair_on_right = chair2

chair_on_right is not similar tochair2, it is chair2.
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Allowing Equality Assertions

• Without equality assertions, the only thing that is equal to

a ground term is itself.

This can be captured as though you had the assertion

X = X. Explicit equality never needs to be used.

• If you allow equality assertions, you need to derive what

follows from them. Either:

axiomatize equality like any other predicate

build special-purpose inference machinery for

equality
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Axiomatizing Equality

X = X.

X = Y ← Y = X.

X = Z ← X = Y ∧ Y = Z.

For eachn-ary function symbolf there is a rule of the form

f (X1, . . . , Xn) = f (Y1, . . . , Yn) ←
X1 = Y1 ∧ · · · ∧ Xn = Yn.

For eachn-ary predicate symbolp, there is a rule of the form

p(X1, . . . , Xn) ←
p(Y1, . . . , Yn) ∧ X1 = Y1 ∧ · · · ∧ Xn = Yn.
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Special-Purpose Equality Reasoning

paramodulation:if you havet1 = t2, then you can replace

any occurrence oft1 by t2.

Treat equality as arewrite rule, substituting equals for

equals.

You select acanonical representationfor each individual and

rewrite all other representations into that representation.

Example: treat the sequence of digits as the canonical

representation of the number.

Example: use the student number as the canonical

representation for students.
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Unique Names Assumption

The convention that different ground terms denote different

individuals is theunique names assumption.

for every pair of distinct ground termst1 andt2, assume

t1 6= t2, where “6=” means “not equal to.”

Example: For each pair of courses, you don’t want to have

to state,math302 6= psyc303, …

Example: Sometimes the unique names assumption is

inappropriate, for example 3+ 7 6= 2 × 5 is wrong.
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Axiomatizing Inequality for the UNA
• c 6= c′ for any distinct constantsc andc′.
• f (X1, . . . , Xn) 6= g(Y1, . . . , Ym) for any distinct function

symbolsf andg.

• f (X1, . . . , Xn) 6= f (Y1, . . . , Yn) ← Xi 6= Yi , for any

function symbolf . There aren instances of this schema

for everyn-ary function symbolf (one for eachi such

that 1≤ i ≤ n).

• f (X1, . . . , Xn) 6= c for any function symbolf and

constantc.

• t 6= X for any termt in whichX appears (wheret is not

the termX).
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Top-down procedure and the UNA

• Inequality isn’t just another predicate. There are

infinitely many answers toX 6= f (Y).

• If you have a subgoalt1 6= t2, for termst1 andt2 there are

three cases:

t1 andt2 don’t unify. In this case,t1 6= t2 succeeds.

t1 andt2 are identical including having the same

variables in the same positions. Heret1 6= t2 fails.

Otherwise, there are instances oft1 6= t2 that succeed

and instances oft1 6= t2 that fail.
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Implementing the UNA

• Recall: in SLD resolution you can select any subgoal in

the body of an answer clause to solve next.

• Idea: only select inequality when it will either succeed

or fail, otherwise select another subgoal. Thus you are

delaying inequality goals.

• If only inequality subgoals remain, and none fail, the

query succeeds.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 1, Page 1

Actions and Planning

• Agents reason in time

• Agents reason about time

Time passes as an agent acts and reasons.

Given a goal, it is useful for an agent to think about what it

will do in the future to determine what it will do now.
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Representing Time
Time can be modeled in a number of ways:

Discrete timeTime can be modeled as jumping from one

time point to another.

Continuous timeYou can model time as being dense.

Event-based timeTime steps don’t have to be uniform; you

can consider the time steps between interesting events.

State spaceInstead of considering time explicitly, you can

consider actions as mapping from one state to another.

You can model time in terms ofpoints or intervals.
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Time and Relations

When modeling relations, you distinguish two basic types:

• Static relationsare those relations whose value does not

depend on time.

• Dynamic relationsare relations whose truth values

depends on time. Either

derived relationswhose definition can be derived

from other relations for each time,

primitive relations whose truth value can be

determined by considering previous times.
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The Delivery Robot World

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o103 o109 o111

lab2

mail

storage

parcel

key k1

rob

door1
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Modeling the Delivery Robot World

Individuals: rooms, doors, keys, parcels, and the robot.

Actions:

• move from room to room

• pick up and put down keys and packages

• unlock doors (with the appropriate keys)

Relations: represent

• the robot’s position

• the position of packages and keys and locked doors

• what the robot is holding
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Example Relations

• at(Obj, Loc) is true in a situation if objectObj is at
locationLoc in the situation.

• carrying(Ag, Obj) is true in a situation if agentAg is
carryingObj in that situation.

• sitting_at(Obj, Loc) is true in a situation if objectObj

is sitting on the ground (not being carried) at location
Loc in the situation.

• unlocked(Door) is true in a situation if doorDoor is
unlocked in the situation.

• autonomous(Ag) is true if agentAg can move
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autonomously. This is static.

• opens(Key, Door) is true if keyKeyopens doorDoor.

This is static.

• adjacent(Pos1, Pos2) is true if positionPos1 is adjacent

to positionPos2 so that the robot can move fromPos1 to

Pos2 in one step.

• between(Door, Pos1, Pos2) is true ifDoor is between

positionPos1 and positionPos2. If the door is unlocked,

the two positions are adjacent.
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Actions

• move(Ag, From, To): agentAg moves from location

From to adjacent locationTo. The agent must be sitting

at locationFrom.

• pickup(Ag, Obj) agentAg picks upObj. The agent

must be at the location thatObj is sitting.

• putdown(Ag, Obj) the agentAg puts downObj. It must

be holdingObj.

• unlock(Ag, Door) agentAg unlocksDoor. It must be

outside the door and carrying the key to the door.
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Initial Situation

sitting_at(rob, o109).

sitting_at(parcel, storage).

sitting_at(k1, mail).

Static Facts

between(door1, o103, lab2).

opens(k1, door1).

autonomous(rob).
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Derived Relations

at(Obj, Pos) ← sitting_at(Obj, Pos).

at(Obj, Pos) ← carrying(Ag, Obj) ∧ at(Ag, Pos).

adjacent(o109, o103).

adjacent(o103, o109).

· · ·
adjacent(lab2, o109).

adjacent(P1, P2) ←
between(Door, P1, P2) ∧
unlocked(Door).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 8, Lecture 2, Page 1

STRIPS Representation

• State-based view of time.

• The actions are external to the logic.

• Given a state and an action, the STRIPS representation is

used to determine

whether the action can be carried out in the state

what is true in the resulting state
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STRIPS Representation: Idea

• Predicates areprimitive or derived.

• Use normal rules for derived predicates.

• The STRIPS representation is used to determine the truth

values of primitive predicates based on the previous state

and the action.

• Based on the idea that most predicates are unaffected by

a single action.

• STRIPS assumption:Primitive relations not mentioned

in the description of the action stay unchanged.
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STRIPS Representation of an action

The STRIPS representationfor an action consists of:

preconditionsA list of atoms that need to be true for the

action to occur

delete list A list of those primitive relations no longer true

after the action

add list A list of the primitive relations made true by the

action

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 2, Page 4

STRIPS Representation of “pickup”

The action pickup(Ag, Obj) can be defined by:

preconditions[autonomous(Ag), Ag 6= Obj, at(Ag, Pos),

sitting_at(Obj, Pos)]
delete list [sitting_at(Obj, Pos)]
add list [carrying(Ag, Obj)]
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STRIPS Representation of “move”

The action move(Ag, Pos1, Pos2) can be defined by:

preconditions[autonomous(Ag), adjacent(Pos1, Pos2, S) ,

sitting_at(Ag, Pos1)]
delete list [sitting_at(Ag, Pos1)]
add list [sitting_at(Ag, Pos2)]
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Example Transitions



sitting_at(rob, o109).

sitting_at(parcel, storage).

sitting_at(k1, mail).




move(rob, o109, storage)−→




sitting_at(rob, storage).

sitting_at(parcel, storage).

sitting_at(k1, mail).




pickup(rob, parcel)−→




sitting_at(rob, storage).

carrying(rob, parcel).

sitting_at(k1, mail).
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Situation Calculus

• State-based representation where the states are denoted

by terms.

• A situation is a term that dentotes a state.

• There are two ways to refer to states:

init denotes the initial state

do(A, S) denotes the state resulting from doing

actionA in stateS, if it is possible to doA in S.

• A situation also encodes how to get to the state it denotes.
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Example States

• init

• do(move(rob, o109, o103), init)

• do(move(rob, o103, mail),

do(move(rob, o109, o103),

init)).

• do(pickup(rob, k1),

do(move(rob, o103, mail),

do(move(rob, o109, o103),

init))).
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Using the Situation Terms

• Add an extra term to each dynamic predicate indicating

the situation.

• Example Atoms:

at(rob, o109, init)

at(rob, o103, do(move(rob, o109, o103), init))

at(k1, mail, do(move(rob, o109, o103), init))
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Axiomatizing using the Situation Calculus

• You specify what is true in theinitial state using axioms

with init as the situation parameter.

• Primitive relationsare axiomatized by specifying what

is true in situationdo(A, S) in terms of what holds in

situationS.

• Derived relationsare defined using clauses with a free

variable in the situation argument.

• Static relationsare defined without reference to the

situation.
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Initial Situation

sitting_at(rob, o109, init).

sitting_at(parcel, storage, init).

sitting_at(k1, mail, init).

Derived Relations

adjacent(P1, P2, S) ←
between(Door, P1, P2) ∧
unlocked(Door, S).

adjacent(lab2, o109, S).

· · ·
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When are actions possible?

poss(A, S) is true if actionA is possible in stateS.

poss(putdown(Ag, Obj), S) ←
carrying(Ag, Obj, S).

poss(move(Ag, Pos1, Pos2), S) ←
autonomous(Ag) ∧
adjacent(Pos1, Pos2, S) ∧
sitting_at(Ag, Pos1, S).
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Axiomatizing Primitive Relations

Example: Unlocking the door makes the door unlocked:

unlocked(Door, do(unlock(Ag, Door), S)) ←
poss(unlock(Ag, Door), S).

Frame Axiom: No actions lock the door:

unlocked(Door, do(A, S)) ←
unlocked(Door, S) ∧
poss(A, S).
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Example: axiomatizingcarried
Picking up an object causes it to be carried:

carrying(Ag, Obj, do(pickup(Ag, Obj), S)) ←
poss(pickup(Ag, Obj), S).

Frame Axiom: The object is being carried if it was being

carried before unless the action was to put down the object:

carrying(Ag, Obj, do(A, S)) ←
carrying(Ag, Obj, S) ∧
poss(A, S) ∧
A 6= putdown(Ag, Obj).
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More General Frame Axioms

The only actions that undositting_at for objectObj is when

Obj moves somewhere or when someone is picking upObj.

sitting_at(Obj, Pos, do(A, S)) ←
poss(A, S) ∧
sitting_at(Obj, Pos, S) ∧
∀Pos1 A 6= move(Obj, Pos, Pos1) ∧
∀Ag A 6= pickup(Ag, Obj).

The last line is equivalent to:

∼∃Ag A= pickup(Ag, Obj)
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which can be implemented as

sitting_at(Obj, Pos, do(A, S)) ←
· · · ∧ · · · ∧ · · · ∧
∼is_pickup_action(A, Obj).

with the clause:

is_pickup_action(A, Obj) ←
A = pickup(Ag, Obj).

which is equivalent to:

is_pickup_action(pickup(Ag, Obj), Obj).
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STRIPS and the Situation Calculus

• Anything that can be stated in STRIPS can be stated in

the situation calculus.

• The situation calculus is more powerful. For example,

the “drop everything” action.

• To axiomatize STRIPS in the situation calculus, we can

use holds(C, S) to mean thatC is true in situationS.
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holds(C, do(A, W)) ←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold inW.

add_list(A, AL) ∧ C is on the

member(C, AL). addlist ofA.

holds(C, do(A, W)) ←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold inW.

delete_list(A, DL) ∧ C isn’t on the

notin(C, DL) ∧ deletelist ofA.

holds(C, W). C held beforeA.
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