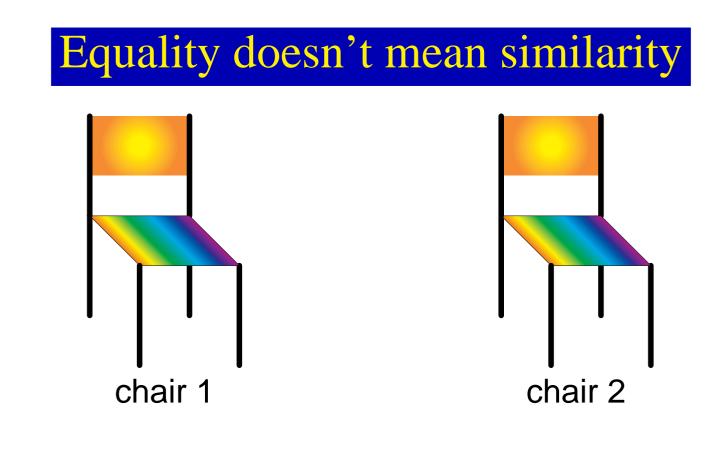


Sometimes two terms denote the same individual.

- Example: Clark Kent & superman. $4 \times 4 \& 11 + 5$. The projector we used last Friday & this projector.
- Ground term t_1 equals ground term t_2 , written $t_1 = t_2$, is true in interpretation *I* if t_1 and t_2 denote the same individual in interpretation *I*.



 $chair1 \neq chair2$ $chair_on_right = chair2$ $chair_on_right$ is not similar to chair2, it is chair2.

Allowing Equality Assertions

- Without equality assertions, the only thing that is equal to a ground term is itself.
 - This can be captured as though you had the assertion X = X. Explicit equality never needs to be used.
- If you allow equality assertions, you need to derive what follows from them. Either:
 - \succ axiomatize equality like any other predicate
 - build special-purpose inference machinery for equality

$$X = X.$$

$$X = Y \leftarrow Y = X.$$

$$X = Z \leftarrow X = Y \land Y = Z.$$

For each n-ary function symbol f there is a rule of the form

$$f(X_1, \ldots, X_n) = f(Y_1, \ldots, Y_n) \leftarrow X_1 = Y_1 \wedge \cdots \wedge X_n = Y_n.$$

For each *n*-ary predicate symbol *p*, there is a rule of the form

$$p(X_1, \ldots, X_n) \leftarrow$$

 $p(Y_1, \ldots, Y_n) \wedge X_1 = Y_1 \wedge \cdots \wedge X_n = Y_n.$

Special-Purpose Equality Reasoning

- paramodulation: if you have $t_1 = t_2$, then you can replace any occurrence of t_1 by t_2 .
- Treat equality as a rewrite rule, substituting equals for equals.
- You select a canonical representation for each individual and rewrite all other representations into that representation.
- **Example:** treat the sequence of digits as the canonical representation of the number.
- **Example:** use the student number as the canonical representation for students.

Unique Names Assumption

- The convention that different ground terms denote different individuals is the unique names assumption.
- for every pair of distinct ground terms t_1 and t_2 , assume $t_1 \neq t_2$, where " \neq " means "not equal to."
- **Example:** For each pair of courses, you don't want to have to state, *math* $302 \neq psyc303, ...$

Example: Sometimes the unique names assumption is inappropriate, for example $3 + 7 \neq 2 \times 5$ is wrong.

Axiomatizing Inequality for the UNA

- $\succ c \neq c'$ for any distinct constants *c* and *c'*.
- ► $f(X_1, ..., X_n) \neq g(Y_1, ..., Y_m)$ for any distinct function symbols *f* and *g*.
- ► $f(X_1, ..., X_n) \neq f(Y_1, ..., Y_n) \leftarrow X_i \neq Y_i$, for any function symbol *f*. There are *n* instances of this schema for every *n*-ary function symbol *f* (one for each *i* such that $1 \leq i \leq n$).
- ► $f(X_1, ..., X_n) \neq c$ for any function symbol f and constant c.
- > $t \neq X$ for any term *t* in which *X* appears (where *t* is not the term *X*).

Top-down procedure and the UNA

- Inequality isn't just another predicate. There are infinitely many answers to $X \neq f(Y)$.
- If you have a subgoal $t_1 \neq t_2$, for terms t_1 and t_2 there are three cases:
 - > t_1 and t_2 don't unify. In this case, $t_1 \neq t_2$ succeeds.
 - > t_1 and t_2 are identical including having the same variables in the same positions. Here $t_1 \neq t_2$ fails.
 - ➤ Otherwise, there are instances of $t_1 \neq t_2$ that succeed and instances of $t_1 \neq t_2$ that fail.

Implementing the UNA

- Recall: in SLD resolution you can select any subgoal in the body of an answer clause to solve next.
- Idea: only select inequality when it will either succeed or fail, otherwise select another subgoal. Thus you are delaying inequality goals.
- If only inequality subgoals remain, and none fail, the query succeeds.

