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Searching

e Often we are not given an algorithm to solve a proble
but only a specification of what is a solution — we hav
to search for a solution.

e | Searchis a way to implement don’t know
nondeterminism.

e So far we have seen how to convert a semantic proble
of finding logical consequence to a search problem of
finding derivations.
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Search Grapls

e Algraph consists of a se¥l of [nodegand a sef of
ordered pairs of nodes, callgalcs.

e Noden; is a| neighbor of ny if there is an arc fronm; to
no. Thatis, if(ng, no) € A

e A |path/is a sequence of nodesg, ny, ..., Nk such that
(Ni—1, nj) € A.

e Given a set o[start node#and goal nodes,a| solution

Is a path from a start node to a goal node.
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Example Graph for the Delivery Rohot
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Search Graph for SLD Resoluti
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Graph Searchirig

e Generic search algorithm: given a graph, start nodes, gnd
goal nodes, incrementally explore paths from the start
nodes.

e Maintain of paths from the start node that
have been explored.

e As search proceeds, the frontier expands into the
unexplored nodes until a goal node is encountered.

e The way in which the frontier is expanded defines the
search strategy.
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Problem Solving by Graph Search|ng
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Generic Graph Search Algorithm

search{Fg) <«
selectNode Fq, F1) A
Is_goal(Node.

searchiiFg) <
selectNode Fg, F1) A
neighborgNode NN) A
add to frontier(NN, F1, F2) A
search{F»).
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e searchFrontier) is true if there is a path from one
element of thd-rontier to a goal node.

e is _goal(N) is true if N is a goal node.
e neighborgN, NN) meand\N is list of neighbors ofN.

e selectN, Fo, F1) meandN € Fg andF; = Fg — {N}.
Fails if Fg is empty.

e add to frontier(NN, F1, F») means thaF> = F; U NN.
selectandadd to_frontier define the search strategy.

neighborsdefines the graph

Is_goal defines what is a solution.

0og
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Depth-first Seargh

Depth-first searcltreats the frontier as a stack: it always
selects the last element added to the frontier.

selectNode [NodéFrontier], Frontier).
add to_frontier(Neighbors Frontiery, Frontiery) <«
appendNeighbors Frontiery, Frontiers).

Frontier: [eq, &, .. .]
e1 is selected. Its neighbors are added to the front of the stgk.
e is only selected when all paths frosp have been explored

i
0
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lllustrative Graph — Depth-first Search
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J

Complexity of Depth-first Sear¢h

e Depth-first search isn’t guaranteed to halt on infinite
graphs or graphs with cycles.

e The space complexity is linear in the size of the path
being explored.

e Search is unconstrained by the goal until it happens to
stumble on the goal.
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Breadth-first Seargh

Breadth-first searchireats the frontier as a queue: it alway
selects the earliest element added to the frontier.

selectNode [NoddFrontier], Frontier).
add to_frontier(Neighbors Frontiery, Frontierp) <«
appendFrontier;, Neighbors Frontiers).

Frontier: [eq, &, .. .]
e, is selected. Its neighbors are added to the end of the quiue.

& IS selected next.
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llustrative Graph — Breadth-first Seaic
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Complexity of Breadth-first Seargh

e The|branching factokof a node is the number of its
neighbors.

e |f the branching factor for all nodes is finite, breadth-fir
search is guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

e Time complexity is exponential in the path length:
b", whereb is branching factom is path length.

e The space complexity is exponential in path lendth:

e Search is unconstrained by the goal.
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node.

| owest-cost-first Seartch

J

e Sometimes there afeostg associated with arcs. The
cost of a path is the sum of the costs of its arcs.

e Lowest-cost-first search finds the shortest path to a gojgl

e At each stage, it selects the shortest path on the fronti

e The frontier is implemented as a priority queue ordere
by path length.

e When arc costs are equak breadth-first search.
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Heuristic Search

e We use

h(n)

node.

e Previous methods do not take into account the goal ungl
they are at a goal node.

e Often there is extra knowledge that can be used to gui

the searchtheuristics]

as an estimate of the distance from node

to a goal node.

h(n) is an underestimate if it is less than or equal to th
actual cost of the shortest path from nod® a goal.

e h(n) uses only readily obtainable information about a

i
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Best-first Seardh

e Idea: always choose the node on the frontier with the
smallesth-value.

e It treats the frontier as a priority queue orderedhby
e It uses space exponential in path length.

e Itisn't guaranteed to find a solution, even of one exists
It doesn’t always find the shortest path.
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lllustrative Graph — Best-first Search
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Heuristic Depth-first Sear¢h

It's a way to use heuristic knowledge in depth-first
search.

e Idea: order the neighbors of a node (ybefore adding
them to the front of the frontier.

Locally chooses which subtree to develop, but still doe
depth-first search. It explores all paths from the node
the head of the frontier before exploring paths from th
next node.

e Space is linear in path length. It isn’t guaranteed to fin@a
solution. It can get led up the garden path.
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A* Search
e A* search takes the path to a node and heuristic value gpto
account.

Let g(n) be the cost of the path found to node

e Leth(n) be the estimate of the cost framto a goal.

Letf(n) = g(n) + h(n). Itis an estimate of a path from
the start to a goal via.

actual estimate
stat — n — goal

g(n) h(n)

f(n)
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A* Search Algorithm

e A*is a mix of lowest-cost-first and best-first search.

e It treats the frontier as a priority queue ordered y).

e It always chooses the node on the frontier with the lowdst
estimated distance from the start to a goal node
constrained to go via that node.
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Admissibility of A*

If there is a solutionA* always finds an optimal solution
—the first path to a goal selected— if

e the branching factor is finite

e arc costs are bounded above zero (there is somé
such that all of the arc costs are greater thpand

e h(n) is an underestimate of the length of the shortest pggth
from n to a goal node.
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Why is A* admissible

e Thef-value for any node on an optimal solution path is
less than or equal to tifevalue of an optimal solution.
(As his an underestimate).

e The search never selects a node with a highealue
than thef -value of an optimal solution. A non-optimal
solution has a highdrvalue — so it will never be
selected.

e It halts, as the minimurg-value on the frontier keeps
increasing, and will eventually exceed any finite numb
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