
Computational Intelligence Chapter 4, Lecture 1, Page 1

Searching

• Often we are not given an algorithm to solve a problem,

but only a specification of what is a solution — we have

to search for a solution.

• Searchis a way to implement don’t know

nondeterminism.

• So far we have seen how to convert a semantic problem

of finding logical consequence to a search problem of

finding derivations.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 1, Page 2

Search Graphs

• A graph consists of a setN of nodes and a setA of

ordered pairs of nodes, calledarcs.

• Noden2 is a neighbor of n1 if there is an arc fromn1 to

n2. That is, if〈n1, n2〉 ∈ A.

• A path is a sequence of nodesn0, n1, . . . , nk such that

〈ni−1, ni〉 ∈ A.

• Given a set ofstart nodesand goal nodes,a solution

is a path from a start node to a goal node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 3

Example Graph for the Delivery Robot

o109o103tsmail o111

l2d3 l2d4

l3d2

l3d1

l3d3

l2d2l2d1

o119

storage

o125

r123

o123

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 4, Lecture 1, Page 4

Search Graph for SLD Resolution

a ← b ∧ c. a ← g.

a ← h. b ← j .

b ← k. d ← m.

d ← p. f ← m.

f ← p. g ← m.

g ← f . k ← m.

h ← m. p.

?a ∧ d

yes←a∧d

yes←j∧c∧d

yes←k∧c∧d

yes←m∧c∧d

yes←g∧dyes←b∧c∧d

yes←m∧d

yes←m∧d

yes←f∧d

yes←p∧d

yes←d

yes←m yes←p

yes←h∧d

yes←m∧d

yes←

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 5

Graph Searching

• Generic search algorithm: given a graph, start nodes, and

goal nodes, incrementally explore paths from the start

nodes.

• Maintain a frontier of paths from the start node that

have been explored.

• As search proceeds, the frontier expands into the

unexplored nodes until a goal node is encountered.

• The way in which the frontier is expanded defines the

search strategy.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 4, Lecture 1, Page 6

Problem Solving by Graph Searching

frontier

explored nodes

unexplored nodes

start
node

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 1, Page 7

Generic Graph Search Algorithm

search(F0) ←
select(Node, F0, F1) ∧
is_goal(Node).

search(F0) ←
select(Node, F0, F1) ∧
neighbors(Node, NN) ∧
add_to_frontier(NN, F1, F2) ∧
search(F2).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 4, Lecture 1, Page 8

• search(Frontier) is true if there is a path from one

element of theFrontier to a goal node.

• is_goal(N) is true ifN is a goal node.

• neighbors(N, NN) meansNN is list of neighbors ofN.

• select(N, F0, F1) meansN ∈ F0 andF1 = F0 − {N}.
Fails if F0 is empty.

• add_to_frontier(NN, F1, F2) means thatF2 = F1 ∪ NN.

selectandadd_to_frontier define the search strategy.

neighborsdefines the graph

is_goal defines what is a solution.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 2, Page 1

Depth-first Search

Depth-first searchtreats the frontier as a stack: it always

selects the last element added to the frontier.

select(Node, [Node|Frontier], Frontier).

add_to_frontier(Neighbors, Frontier1, Frontier2) ←
append(Neighbors, Frontier1, Frontier2).

Frontier: [e1, e2, . . .]
e1 is selected. Its neighbors are added to the front of the stack.

e2 is only selected when all paths frome1 have been explored.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 2, Page 2

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 2, Page 3

Complexity of Depth-first Search

• Depth-first search isn’t guaranteed to halt on infinite

graphs or graphs with cycles.

• The space complexity is linear in the size of the path

being explored.

• Search is unconstrained by the goal until it happens to

stumble on the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 2, Page 4

Breadth-first Search

Breadth-first searchtreats the frontier as a queue: it always

selects the earliest element added to the frontier.

select(Node, [Node|Frontier], Frontier).

add_to_frontier(Neighbors, Frontier1, Frontier2) ←
append(Frontier1, Neighbors, Frontier2).

Frontier: [e1, e2, . . .]
e1 is selected. Its neighbors are added to the end of the queue.

e2 is selected next.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 2, Page 5

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 2, Page 6

Complexity of Breadth-first Search

• The branching factorof a node is the number of its

neighbors.

• If the branching factor for all nodes is finite, breadth-first

search is guaranteed to find a solution if one exists.

It is guaranteed to find the path with fewest arcs.

• Time complexity is exponential in the path length:

bn, whereb is branching factor,n is path length.

• The space complexity is exponential in path length:bn.

• Search is unconstrained by the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 2, Page 7

Lowest-cost-first Search

• Sometimes there arecosts associated with arcs. The

cost of a path is the sum of the costs of its arcs.

• Lowest-cost-first search finds the shortest path to a goal

node.

• At each stage, it selects the shortest path on the frontier.

• The frontier is implemented as a priority queue ordered

by path length.

• When arc costs are equalH⇒ breadth-first search.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 3, Page 1

Heuristic Search
• Previous methods do not take into account the goal until

they are at a goal node.

• Often there is extra knowledge that can be used to guide

the search:heuristics.

• We use h(n) as an estimate of the distance from noden

to a goal node.

• h(n) is an underestimate if it is less than or equal to the

actual cost of the shortest path from noden to a goal.

• h(n) uses only readily obtainable information about a

node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 2

Best-first Search

• Idea: always choose the node on the frontier with the

smallesth-value.

• It treats the frontier as a priority queue ordered byh.

• It uses space exponential in path length.

• It isn’t guaranteed to find a solution, even of one exists.

It doesn’t always find the shortest path.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 3, Page 3

Illustrative Graph — Best-first Search

g

s

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 4

Heuristic Depth-first Search
• It’s a way to use heuristic knowledge in depth-first

search.

• Idea: order the neighbors of a node (byh) before adding

them to the front of the frontier.

• Locally chooses which subtree to develop, but still does

depth-first search. It explores all paths from the node at

the head of the frontier before exploring paths from the

next node.

• Space is linear in path length. It isn’t guaranteed to find a

solution. It can get led up the garden path.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 3, Page 5

A∗ Search
• A∗ search takes the path to a node and heuristic value into

account.

• Let g(n) be the cost of the path found to noden.

• Let h(n) be the estimate of the cost fromn to a goal.

• Let f (n) = g(n) + h(n). It is an estimate of a path from

the start to a goal vian.

start
actual−→ n

︸ ︷︷ ︸

g(n)

estimate−→ goal
︸ ︷︷ ︸

h(n)
︸ ︷︷ ︸

f (n)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 6

A∗ Search Algorithm

• A∗ is a mix of lowest-cost-first and best-first search.

• It treats the frontier as a priority queue ordered byf (n).

• It always chooses the node on the frontier with the lowest

estimated distance from the start to a goal node

constrained to go via that node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 4, Lecture 3, Page 7

Admissibility of A∗

If there is a solution,A∗ always finds an optimal solution

—the first path to a goal selected— if

• the branching factor is finite

• arc costs are bounded above zero (there is someε > 0

such that all of the arc costs are greater thanε), and

• h(n) is an underestimate of the length of the shortest path

from n to a goal node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 8

Why is A∗ admissible?

• Thef -value for any node on an optimal solution path is

less than or equal to thef -value of an optimal solution.

(As h is an underestimate).

• The search never selects a node with a higherf -value

than thef -value of an optimal solution. A non-optimal

solution has a higherf value — so it will never be

selected.

• It halts, as the minimumg-value on the frontier keeps

increasing, and will eventually exceed any finite number.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

