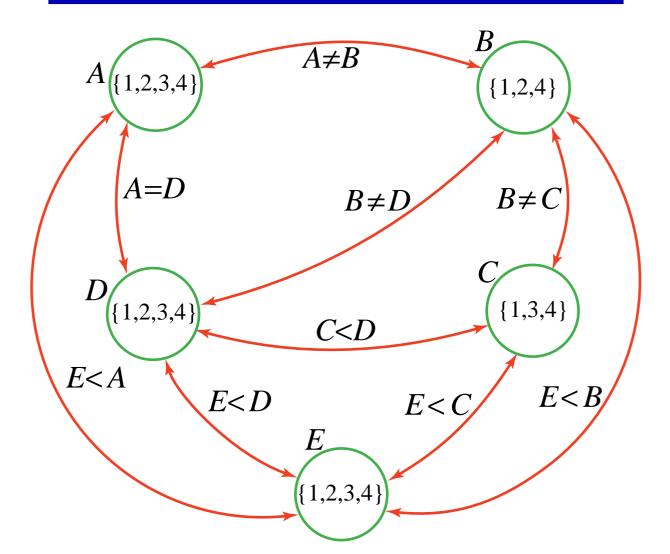
Consistency Algorithms

- Idea: prune the domains as much as possible before selecting values from them.
- A variable is domain consistent if no value of the domain of the node is ruled impossible by any of the constraints.

Example: $D_B = \{1, 2, 3, 4\}$ isn't domain consistent as B = 3 violates the constraint $B \neq 3$.

- A constraint network has nodes corresponding to variables with their associated domain. Each constraint relation P(X, Y) corresponds to arcs $\langle X, Y \rangle$ and $\langle Y, X \rangle$.
- An arc $\langle X, Y \rangle$ is arc consistent if for each value of X in \mathbf{D}_X there is some value for Y in \mathbf{D}_Y such that P(X, Y) is satisfied. A network is arc consistent if all its arcs are arc consistent.
- For an arc $\langle X, Y \rangle$ is *not* arc consistent, all values of X in \mathbf{D}_X for which there is no corresponding value in \mathbf{D}_Y may be deleted from \mathbf{D}_X to make the arc $\langle X, Y \rangle$ consistent.

Example Constraint Network



Arc Consistency Algorithm

- The arcs can be considered in turn making each arc consistent.
- An arc $\langle X, Y \rangle$ needs to be revisited if the domain of *Y* is reduced.
- Three possible outcomes (when all arcs are arc consistent):
- \blacktriangleright Each domain is empty \Longrightarrow no solution
- \blacktriangleright Each domain has a single value \Longrightarrow unique solution
- Otherwise, split a domain & apply arc consistency to each case.

- Many search spaces are too big for systematic search.
- A useful method in practice for some consistency and optimization problems is hill climbing:
 - Assume a heuristic value for each assignment of values to all variables.
- Maintain a single node corresponding to an assignment of values to all variables.
- Select a neighbor of the current node that improves the heuristic value to be the next current node.

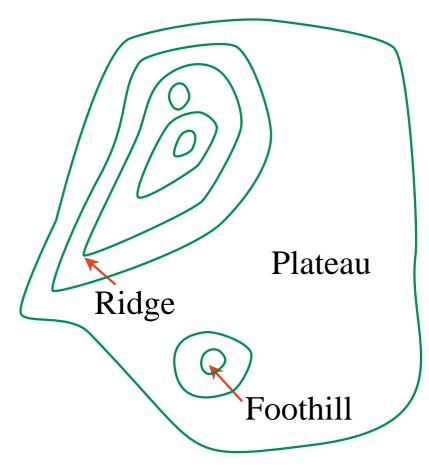
Selecting Neighbors in Hill Climbing

- When the domains are unordered, the neighbors of a node correspond to choosing another value for one of the variables.
- When the domains are ordered, the neighbors of a node are the adjacent values for one of the dimensions.
- If the domains are continuous, you can use
 gradient ascent: change each variable proportional to
 the gradient of the heuristic function in that direction.
 The value of variable X_i goes from v_i to v_i + η ∂h/∂X_i.
 Gradient descent: go downhill; v_i beomes v_i η ∂h/∂X_i.

Problems with Hill Climbing

Foothills local maxima that are not global maxima

- **Plateaus** heuristic values are uninformative
- **Ridge** foothill where *n*-step lookahead might help
- Ignorance of the peak



Randomized Algorithms

Consider two methods to find a maximum value:

- Hill climbing, starting from some position, keep moving uphill, & report maximum value found
- Pick values at random & report maximum value found

Combinations:

> two-phase search: random search, then hill climbing

maintain multiple nodes, perhaps combine them

