Constraint Satisfaction Proble

[ 1 Multi-dimensional Selection Problems

L] Given a set of variables, each with a set of possible v:
(a domain), assign a value to each variable that eithe

] satisfies some set of constraints:
satisfiability problems— “hard constraints”

L] minimizes some cost function, where each
assignment of values to variables has some cost:
optimization problems— “soft constraints”

L1 Many problems are a mix of hard and soft constraint:
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Relationship to Seairrc

The path to a goal isn’t important, only the solution is

Many algorithms exploit the multi-dimensional nature
the problems.

There are no predefined starting nodes.

Often these problems are huge, with thousands of
variables, so systematically searching the space is
Infeasible.

For optimization problems, there are no well-defined
goal nodes.
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Posing a Constraint Satisfaction Probl

A CSP is characterized by
[ | A setof variabled/¢, Vo, ..., Vp.

] Each variablé/; has an associated domadix, of
possible values.

L1 For satisfiability problems, there are constraint relatic
on various subsets of the variables which give legal
combinations of values for these variables.

L] A solution to the CSP is an-tuple of values for the
variables that satisfies all the constraint relations.
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Example: scheduling activitié

Variables: A, B, C, D, E that represent the starting times c
various activities.

Domains: Da = {1, 2, 3,4}, Dg = {1, 2, 3, 4},
Dc=1{1,23,4},Dp ={1, 2, 3,4}, De = {1, 2, 3, 4}

Constraints:
B#£EIHIACE2DAAEB AB#AC)A
C<DAA=D AE<AAE<BA
(E<C)A(E <D)AB#£D).
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Solving CSP

The finite constraint satisfaction problem is NP-hard. We

L1 Try to find algorithms that work well on typical cases
even though the worst case may be exponential

L] Try to find special cases that have efficient algorithm:
L] Try to find efficient approximation algorithms

L] Develop parallel and distributed algorithms
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Generate the assignment spéce- Dy, x Dy, x ... x Dy,.
Test each assignment with the constraints.

Example:
D = DaXxDpxDc xDp x Dg
= {1,2,3,4 x{1,2,3,4} x {1, 2, 3,4}
x{1,2,3,4} x {1, 2, 3,4}
= {(1,1,1,1,1),(1,1,1,1,2),..,(4,4,4,4, 4)}

Generate-and-test is always exponential.
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Backtracking Algorithm

Systematically explor® by instantiating the variables in
some order and evaluating each constraint predicate as ¢
as all its variables are bound. Any partial assignment tha
doesn’t satisfy the constraint can be pruned.

Example AssignmentA = 1 A B = 1 is inconsistent with
constraintA £ B regardless of the value of the other variak
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CSP as Graph Searchi

A CSP can be seen as a graph-searching algorithm:
L] Totally order the variabled/s, ..., V.
L1 A node assigns values to the fijstariables.

LI The neighbors of nodg/1/va, ..., Vj/v;} are the
consistent nodeg/1/va, . .., Vj/Vj, Vj+1/Vj+1} for each

Vi+1 € Dy,
1 The start node is the empty assignmgnt

L] A goal node is a total assignment that satisfies the
constraints.
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