
Computational Intelligence Chapter 4, Lecture 5, Page 1

Constraint Satisfaction Problems

➤ Multi-dimensional Selection Problems

➤ Given a set of variables, each with a set of possible values

(a domain), assign a value to each variable that either

➣ satisfies some set of constraints:

satisfiability problems— “hard constraints”

➣ minimizes some cost function, where each

assignment of values to variables has some cost:

optimization problems— “soft constraints”

➤ Many problems are a mix of hard and soft constraints.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 2

Relationship to Search

➤ The path to a goal isn’t important, only the solution is.

➤ Many algorithms exploit the multi-dimensional nature of

the problems.

➤ There are no predefined starting nodes.

➤ Often these problems are huge, with thousands of

variables, so systematically searching the space is

infeasible.

➤ For optimization problems, there are no well-defined

goal nodes.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 3

Posing a Constraint Satisfaction Problem

A CSP is characterized by

➤ A set of variablesV1, V2, . . . , Vn.

➤ Each variableVi has an associated domainDVi of

possible values.

➤ For satisfiability problems, there are constraint relations

on various subsets of the variables which give legal

combinations of values for these variables.

➤ A solution to the CSP is ann-tuple of values for the

variables that satisfies all the constraint relations.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 4

Example: scheduling activities

Variables: A, B, C, D, E that represent the starting times of

various activities.

Domains: DA = {1, 2, 3, 4}, DB = {1, 2, 3, 4},
DC = {1, 2, 3, 4}, DD = {1, 2, 3, 4}, DE = {1, 2, 3, 4}
Constraints:

(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C) ∧ (E < D) ∧ (B 6= D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 5

Solving CSPs

The finite constraint satisfaction problem is NP-hard. We can

➤ Try to find algorithms that work well on typical cases

even though the worst case may be exponential

➤ Try to find special cases that have efficient algorithms

➤ Try to find efficient approximation algorithms

➤ Develop parallel and distributed algorithms

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 6

Generate-and-Test Algorithm

Generate the assignment spaceD = DV1 × DV2 × . . . × DVn.

Test each assignment with the constraints.

Example:

D = DA × DB × DC × DD × DE

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
×{1, 2, 3, 4} × {1, 2, 3, 4}

= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.
Generate-and-test is always exponential.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 7

Backtracking Algorithms

Systematically exploreD by instantiating the variables in

some order and evaluating each constraint predicate as soon

as all its variables are bound. Any partial assignment that

doesn’t satisfy the constraint can be pruned.

ExampleAssignmentA = 1 ∧ B = 1 is inconsistent with

constraintA 6= B regardless of the value of the other variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 5, Page 8

CSP as Graph Searching

A CSP can be seen as a graph-searching algorithm:

➤ Totally order the variables,V1, . . . , Vn.

➤ A node assigns values to the firstj variables.

➤ The neighbors of node{V1/v1, . . ., Vj/vj} are the

consistent nodes{V1/v1, . . ., Vj/vj , Vj+1/vj+1} for each

vj+1 ∈ DVj+1.

➤ The start node is the empty assignment{}.
➤ A goal node is a total assignment that satisfies the

constraints.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

