
Computational Intelligence Chapter 4, Lecture 3, Page 1

Heuristic Search
➤ Previous methods do not take into account the goal until

they are at a goal node.

➤ Often there is extra knowledge that can be used to guide

the search:heuristics.

➤ We useh(n) as an estimate of the distance from noden

to a goal node.

➤ h(n) is an underestimate if it is less than or equal to the

actual cost of the shortest path from noden to a goal.

➤ h(n) uses only readily obtainable information about a

node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 2

Best-first Search

➤ Idea: always choose the node on the frontier with the

smallesth-value.

➤ It treats the frontier as a priority queue ordered byh.

➤ It uses space exponential in path length.

➤ It isn’t guaranteed to find a solution, even of one exists.

It doesn’t always find the shortest path.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 3

Illustrative Graph — Best-first Search

g

s

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 4

Heuristic Depth-first Search

➤ It’s a way to use heuristic knowledge in depth-first

search.

➤ Idea: order the neighbors of a node (byh) before adding

them to the front of the frontier.

➤ Locally chooses which subtree to develop, but still does

depth-first search. It explores all paths from the node at

the head of the frontier before exploring paths from the

next node.

➤ Space is linear in path length. It isn’t guaranteed to find a

solution. It can get led up the garden path.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 5

A∗ Search
➤ A∗ search takes the path to a node and heuristic value into

account.

➤ Let g(n) be the cost of the path found to noden.

➤ Let h(n) be the estimate of the cost fromn to a goal.

➤ Let f (n) = g(n) + h(n). It is an estimate of a path from

the start to a goal vian.

start
actual−→ n

︸ ︷︷ ︸

g(n)

estimate−→ goal
︸ ︷︷ ︸

h(n)
︸ ︷︷ ︸

f (n)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 6

A∗ Search Algorithm

➤ A∗ is a mix of lowest-cost-first and best-first search.

➤ It treats the frontier as a priority queue ordered byf (n).

➤ It always chooses the node on the frontier with the lowest

estimated distance from the start to a goal node

constrained to go via that node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 7

Admissibility of A∗

If there is a solution,A∗ always finds an optimal solution

—the first path to a goal selected— if

➤ the branching factor is finite

➤ arc costs are bounded above zero (there is someε > 0

such that all of the arc costs are greater thanε), and

➤ h(n) is an underestimate of the length of the shortest path

from n to a goal node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 8

Why is A∗ admissible?

➤ Thef -value for any node on an optimal solution path is

less than or equal to thef -value of an optimal solution.

(As h is an underestimate).

➤ The search never selects a node with a higherf -value

than thef -value of an optimal solution. A non-optimal

solution has a higherf value — so it will never be

selected.

➤ It halts, as the minimumg-value on the frontier keeps

increasing, and will eventually exceed any finite number.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

