Computational Intelligence Chapter 4, Lecture 2, Page 1

Depth-first searchreats the frontier as a stack: it always
selects the last element added to the frontier.

selectNode [NoddaFrontier], Frontier).

add to_frontier(Neighbors Frontier;, Frontiery) <

appendNeighbors Frontierq, Frontiers).

Frontier:[eq, e, .. .]
e, Is selected. Its neighbors are added to the front of the stz
e Is only selected when all paths frosp have been explored

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

lllustrative Graph — Depth-first Sear

©
/ \
/@\ /Q\

@@@é@.ib @bb O@%

ofo ) OO
@@o@ ©§> e bQ



http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 3

Complexity of Depth-first Searc

e Depth-first search isn’'t guaranteed to halt on infinite
graphs or graphs with cycles.

e The space complexity is linear in the size of the path
being explored.

e Search is unconstrained by the goal until it happens to
stumble on the goal.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 4

Breadth-first Searc

Breadth-first searchireats the frontier as a queue: it always
selects the earliest element added to the frontier.

selectNode [NoddFrontier], Frontier).
add to frontier(Neighbors Frontiery, Frontiers) <

appendFrontier;, Neighbors Frontiers).

Frontier: [e, &, .. .]
e, Is selected. Its neighbors are added to the end of the quiue.
& IS selected next.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

lllustrative Graph — Breadth-first Sea

o
/ \
/@\ /@\

@‘i®©‘b® @éb @Qib

) O ) OO
QQOQ @@ e bQ



http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 6

Complexity of Breadth-first Sear

The branching factorof a node is the number of its
neighbors.

If the branching factor for all nodes is finite, breadth-fir
search is guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

Time complexity is exponential in the path length:
b", whereb is branching factom is path length.

The space complexity is exponential in path lendth:

Search is unconstrained by the goal.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 2, Page 7

Lowest-cost-first Searc

Sometimes there alcosts associated with arcs. The
cost of a path is the sum of the costs of its arcs.

Lowest-cost-first search finds the shortest path to a gojl
node.

At each stage, it selects the shortest path on the frontie

The frontier is iImplemented as a priority queue ordere(
by path length.

When arc costs are equaks breadth-first search.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"


http://www.cs.ubc.ca/spider/poole/ci.html

