

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Chapter 2, Lecture 4, Page 2

One rule of derivation, a generalized form of *modus ponens*:

If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause.

(This rule also covers the case when m = 0.)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 2, Lecture 4, Page 6

Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

Suppose there is a *g* such that $KB \vdash g$ and $KB \not\models g$.

Let h be the first atom added to C that's not true in every model of KB. Suppose h isn't true in model I of KB. There must be a clause in KB of form

 $h \leftarrow b_1 \wedge \ldots \wedge b_m$

Each b_i is true in *I*. *h* is false in *I*. So this clause is false in *I*. Therefore *I* isn't a model of *KB*.

Contradiction: thus no such g exists.

Fixed Point

The *C* generated at the end of the bottom-up algorithm is called a fixed point.

Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.

I is a model of KB.

Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*. Then *h* is false and each b_i is true in *I*. Thus *h* can be added to *C*. Contradiction to *C* being the fixed point.

I is called a Minimal Model.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 2, Lecture 5, Page 2

Top-down definite clause interpreter

To solve the query $?q_1 \land \ldots \land q_k$:

$$ac := "yes \leftarrow q_1 \land \ldots \land q_k"$$

repeat

select a conjunct a_i from the body of ac;

choose clause *C* from *KB* with a_i as head;

replace a_i in the body of ac by the body of C

until *ac* is an answer.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Chapter 2, Lecture 5, Page 4

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Chapter 2, Lecture 6, Page 1

- An <u>instance</u> of an atom or a clause is obtained by uniformly substituting terms for variables.
- A substitution is a finite set of the form $\{V_1/t_1, \ldots, V_n/t_n\}$, where each V_i is a distinct variable and each t_i is a term.
- The application of a substitution $\sigma = \{V_1/t_1, \dots, V_n/t_n\}$ to an atom or clause *e*, written $e\sigma$, is the instance of *e* with every occurrence of V_i replaced by t_i .

Application Examples

The following are substitutions:

- $\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$
- $\sigma_2 = \{A/X, Y/b, C/Z, D/e\}$
- $\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$

The following shows some applications:

- $p(A, b, C, D)\sigma_1 = p(A, b, C, e)$
- $p(X, Y, Z, e)\sigma_1 = p(A, b, C, e)$
- $p(A, b, C, D)\sigma_2 = p(X, b, Y, e)$
- $p(X, Y, Z, e)\sigma_2 = p(X, b, Y, e)$
- $p(A, b, C, D)\sigma_3 = p(V, b, W, e)$
- $p(X, Y, Z, e)\sigma_3 = p(V, b, W, e)$

[©] David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Unification Example

- p(A, b, C, D) and p(X, Y, Z, e) have as unifiers:
 - $\sigma_1 = \{X/A, Y/b, Z/C, D/e\}$
 - $\sigma_2 = \{A/X, Y/b, C/Z, D/e\}$
 - $\sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$
 - $\sigma_4 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$
 - $\sigma_5 = \{X/A, Y/b, Z/A, C/A, D/e\}$
 - $\sigma_6 = \{X/A, Y/b, Z/C, D/e, W/a\}$

The first three are most general unifiers.

The following substitutions are not unifiers:

- $\sigma_7 = \{Y/b, D/e\}$
- $\sigma_8 = \{X/a, Y/b, Z/c, D/e\}$

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 2, Lecture 6, Page 5

A generalized answer clause is of the form

 $yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m,$

where t_1, \ldots, t_k are terms and a_1, \ldots, a_m are atoms.

The SLD resolution of this generalized answer clause on a_i with the clause

 $a \leftarrow b_1 \wedge \ldots \wedge b_p$,

where a_i and a have most general unifier θ , is

 $(yes(t_1,\ldots,t_k) \leftarrow$

 $a_1 \wedge \ldots \wedge a_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m) \theta.$

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 2, Lecture 6, Page 7

To solve query PB with variables V_1, \ldots, V_k :

Set *ac* to generalized answer clause $yes(V_1, ..., V_k) \leftarrow B$; While *ac* is not an answer do Suppose *ac* is $yes(t_1, ..., t_k) \leftarrow a_1 \land a_2 \land ... \land a_m$ Select atom a_i in the body of *ac*; Choose clause $a \leftarrow b_1 \land ... \land b_p$ in *KB*; Rename all variables in $a \leftarrow b_1 \land ... \land b_p$; Let θ be the most general unifier of a_i and a. Fail if they don't unify; Set *ac* to $(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land ... \land b_p \land a_{i+1} \land ... \land a_m)\theta$ end while.

Example

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 2, Lecture 6, Page 9

Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term. So that a term can be

 $f(t_1, \ldots, t_n)$ where f is a function symbol and the t_i are terms.

In an interpretation and with a variable assignment, term $f(t_1, \ldots, t_n)$ denotes an individual in the domain.

With one function symbol and one constant we can refer to infinitely many individuals.

Lists

A list is an ordered sequence of elements.

Let's use the constant nil to denote the empty list, and the

function |cons(H, T)| to denote the list with first element H

and rest-of-list *T*. These are not built-in.

The list containing *david*, *alan* and *randy* is

cons(david, cons(alan, cons(randy, nil)))

append(X, Y, Z)is true if list Z contains the elements of Xfollowed by the elements of Y

append(nil, Z, Z).

 $append(cons(A, X), Y, cons(A, Z)) \leftarrow append(X, Y, Z).$

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999