
Computational Intelligence Chapter 2, Lecture 1, Page 1

Representation and Reasoning System

A Representation and Reasoning System (RRS) is made up of:

• formal language:specifies the legal sentences

• semantics:specifies the meaning of the symbols

• reasoning theory or proof procedure:nondeterministic

specification of how an answer can be produced.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 1, Page 2

Implementation of an RRS

An implementation of an RRS consists of

• language parser:maps sentences of the language into

data structures.

• reasoning procedure:implementation of reasoning

theory + search strategy.

Note: the semantics aren’t reflected in the implementation!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 1, Page 3

Using an RRS

❶ Begin with a task domain.

❷ Distinguish those things you want to talk about (the

ontology).

❸ Choose symbols in the computer to denote objects and

relations.

❹ Tell the system knowledge about the domain.

❺ Ask the system questions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 2, Lecture 1, Page 4

Role of Semantics in an RRS

in(alan,cs_building)

in(alan,r123).
part_of(r123,cs_building).
in(X,Y) ←
    part_of(Z,Y) ∧
    in(X,Z).

alan
r123
r023

cs_building

in( , )
part_of( , )

person( )

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 1, Page 5

Simplifying Assumptions of Initial RRS

An agent’s knowledge can be usefully described in terms of

individualsandrelationsamong individuals.

An agent’s knowledge base consists ofdefiniteandpositive

statements.

The environment isstatic.

There are only a finite number of individuals of interest in the

domain. Each individual can be given a unique name.

H⇒ Datalog

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 2, Lecture 1, Page 6

Syntax of Datalog

variable starts with upper-case letter.

constantstarts with lower-case letter or is a sequence of

digits (numeral).

predicate symbolstarts with lower-case letter.

term is either a variable or a constant.

atomic symbol(atom) is of the formp or p(t1, . . . , tn) where

p is a predicate symbol andti are terms.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 1, Page 7

Syntax of Datalog (cont)

definite clauseis either an atomic symbol (a fact) or of the

form:

a︸︷︷︸ ← b1 ∧ · · · ∧ bm︸ ︷︷ ︸
head body

wherea andbi are atomic symbols.

query is of the form ?b1 ∧ · · · ∧ bm.

knowledge baseis a set of definite clauses.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞
☞

Computational Intelligence Chapter 2, Lecture 1, Page 8

Example Knowledge Base

in(alan, R) ←
teaches(alan, cs322) ∧
in(cs322, R).

grandfather(william, X) ←
father(william, Y) ∧
parent(Y, X).

slithy(toves) ←
mimsy∧ borogroves∧
outgrabe(mome, Raths).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 2, Page 1

Semantics: General Idea

A semanticsspecifies the meaning of sentences in the

language.

An interpretationspecifies:

• what objects (individuals) are in the world

• the correspondence between symbols in the computer

and objects & relations in world

constants denote individuals

predicate symbols denote relations

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 2, Page 2

Formal Semantics

An interpretationis a tripleI = 〈D, φ, π〉, where

• D, the domain, is a nonempty set. Elements ofD are

individuals.

• φ is a mapping that assigns to each constant an element

of D. Constantc denotesindividualφ(c).

• π is a mapping that assigns to eachn-ary predicate

symbol a relation: a function fromDn into {TRUE, FALSE}.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 2, Page 3

Example Interpretation

Constants:phone, pencil, telephone.

Predicate Symbol:noisy(unary),left_of (binary).

• D = {✂,☎,✎}.
• φ(phone) = ☎, φ(pencil) = ✎, φ(telephone) = ☎.

• π(noisy): 〈✂〉 FALSE 〈☎〉 TRUE 〈✎〉 FALSE

π(left_of ):

〈✂,✂〉 FALSE 〈✂,☎〉 TRUE 〈✂,✎〉 TRUE

〈☎,✂〉 FALSE 〈☎,☎〉 FALSE 〈☎,✎〉 TRUE

〈✎,✂〉 FALSE 〈✎,☎〉 FALSE 〈✎,✎〉 FALSE

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 2, Page 4

Important points to note

• The domainD can contain real objects. (e.g., a person, a

room, a course).D can’t necessarily be stored in a

computer.

• π(p) specifies whether the relation denoted by then-ary

predicate symbolp is true or false for eachn-tuple of

individuals.

• If predicate symbolp has no arguments, thenπ(p) is

eitherTRUEor FALSE.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 2, Page 5

Truth in an interpretation
Each ground term denotes an individual in an interpretation.

A constantc denotes inI the individualφ(c).

Ground (variable-free) atomp(t1, . . . , tn) is

• true in interpretationI if π(p)(t′1, . . . , t′n) = TRUE, where

ti denotest′i in interpretationI and

• false in interpretationI if π(p)(t′1, . . . , t′n) = FALSE.

Ground clauseh ← b1 ∧ . . . ∧ bm is false in interpretationI

if h is false inI and eachbi is true inI , and is

true in interpretationI otherwise.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 2, Page 6

Example Truths
In the interpretation given before:

noisy(phone) true

noisy(telephone) true

noisy(pencil) false

left_of (phone, pencil) true

left_of (phone, telephone) false

noisy(pencil) ← left_of (phone, telephone) true

noisy(pencil) ← left_of (phone, pencil) false

noisy(phone) ← noisy(telephone) ∧ noisy(pencil) true

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 2, Page 7

Models and logical consequences

• A knowledge base,KB, is true in interpretationI if and

only if every clause inKB is true inI .

• A model of a set of clauses is an interpretation in which

all the clauses are true.

• If KB is a set of clauses andg is a conjunction of atoms,

g is a logical consequenceof KB, written KB |= g, if g

is true in every model ofKB.

• That is,KB |= g if there is no interpretation in whichKB

is true andg is false.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 2, Page 8

Simple Example

KB =




p ← q.

q.

r ← s.

π(p) π(q) π(r) π(s)
I1 TRUE TRUE TRUE TRUE is a model ofKB
I2 FALSE FALSE FALSE FALSE not a model ofKB
I3 TRUE TRUE FALSE FALSE is a model ofKB
I4 TRUE TRUE TRUE FALSE is a model ofKB
I5 TRUE TRUE FALSE TRUE not a model ofKB

KB |= p, KB |= q, KB 6|= r , KB 6|= s

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 2, Page 9

User’s view of Semantics
❶ Choose a task domain:intended interpretation.

❷ Associate constants with individuals you want to name.

❸ For each relation you want to represent, associate a

predicate symbol in the language.

❹ Tell the system clauses that are true in the intended

interpretation: axiomatizing the domain.

❺ Ask questions about the intended interpretation.

❻ If KB |= g, theng must be true in the intended

interpretation.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 2, Page 10

Computer’s view of semantics

• The computer doesn’t have access to the intended

interpretation.

• All it knows is the knowledge base.

• The computer can determine if a formula is a logical

consequence of KB.

• If KB |= g theng must be true in the intended

interpretation.

• If KB 6|= g then there is a model ofKB in whichg is

false. This could be the intended interpretation.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 1

Variables

• Variables areuniversally quantifiedin the scope of a

clause.

• A variable assignmentis a function from variables into

the domain.

• Given an interpretation and a variable assignment,

each term denotes an individual and

each clause is either true or false.

• A clause containing variables is true in an interpretation

if it is true for all variable assignments.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 3, Page 2

Queries and Answers

A query is a way to ask if a body is a logical consequence of

the knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

• an instance of the query that is a logical consequence of

the knowledge baseKB, or

• no if no instance is a logical consequence ofKB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 3

Example Queries

KB =




in(alan, r123).

part_of (r123, cs_building).

in(X, Y) ← part_of (Z, Y) ∧ in(X, Z).

Query Answer

?part_of (r123, B). part_of (r123, cs_building)

?part_of (r023, cs_building). no

?in(alan, r023). no

?in(alan, B). in(alan, r123)

in(alan, cs_building)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 3, Page 4

Logical Consequence

Atom g is a logical consequence ofKB if and only if:

• g is a fact inKB, or

• there is a rule

g ← b1 ∧ . . . ∧ bk

in KB such that eachbi is a logical consequence ofKB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 5

Debugging false conclusions

To debug answerg that is false in the intended interpretation:

• If g is a fact inKB, this fact is wrong.

• Otherwise, supposeg was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where eachbi is a logical consequence ofKB.

If eachbi is true in the intended interpretation, this

clause is false in the intended interpretation.

If somebi is false in the intended interpretation,

debugbi .

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 3, Page 6

Axiomatizing the Electrical Environment

% light(L) is true ifL is a light

light(l1). light(l2).

% down(S) is true if switchS is down

down(s1). up(s2). up(s3).

% ok(D) is true ifD is not broken

ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). H⇒ yes

?light(l6). H⇒ no

?up(X). H⇒ up(s2), up(s3)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 7

connected_to(X, Y) is true if componentX is connected toY

connected_to(w0, w1) ← up(s2).

connected_to(w0, w2) ← down(s2).

connected_to(w1, w3) ← up(s1).

connected_to(w2, w3) ← down(s1).

connected_to(w4, w3) ← up(s3).

connected_to(p1, w3).

?connected_to(w0, W). H⇒ W = w1

?connected_to(w1, W). H⇒ no

?connected_to(Y, w3). H⇒ Y = w2, Y = w4, Y = p1

?connected_to(X, W). H⇒ X = w0, W = w1, …

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 3, Page 8

% lit (L) is true if the lightL is lit

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

% live(C) is true if there is power coming intoC

live(Y) ←
connected_to(Y, Z) ∧
live(Z).

live(outside).

This is a recursive definitionof live.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 3, Page 9

Recursion and Mathematical Induction

above(X, Y) ← on(X, Y).

above(X, Y) ← on(X, Z) ∧ above(Z, Y).

This can be seen as:

• Recursive definition ofabove: proveabovein terms of a

base case (on) or a simpler instance of itself; or

• Way to proveaboveby mathematical induction: the base

case is when there are no blocks betweenX andY, and if

you can proveabovewhen there aren blocks between

them, you can prove it when there aren + 1 blocks.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

Computational Intelligence Chapter 2, Lecture 3, Page 10

Limitations
Suppose you had a database using the relation:

enrolled(S, C)

which is true when studentS is enrolled in courseC.

You can’t define the relation:

empty_course(C)

which is true when courseC has no students enrolled in it.

This is becauseempty_course(C) doesn’t logically follow

from a set ofenrolledrelations. There are always models

where someone is enrolled in a course!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html

