Neural Networks

- These representations are inspired by neurons and their connections in the brain.
- Artificial neurons, or units, have inputs, and an output. The output can be connected to the inputs of other units.
- The output of a unit is a parameterized non-linear function of its inputs.
- Learning occurs by adjusting parameters to fit data.
- Neural networks can represent an approximation to any function.

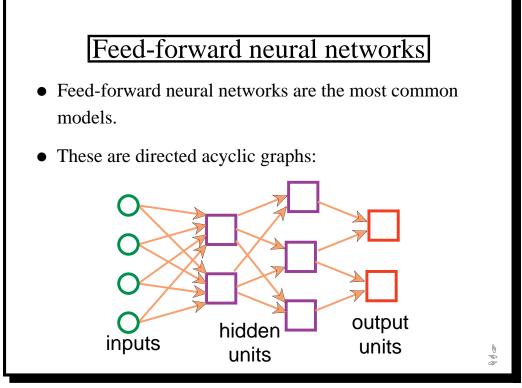
© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

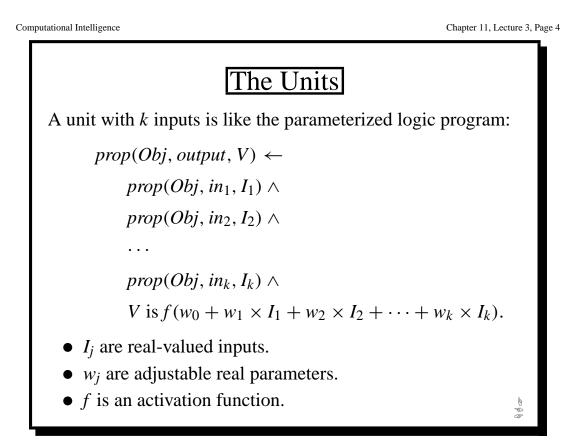
Chapter 11, Lecture 3, Page 2

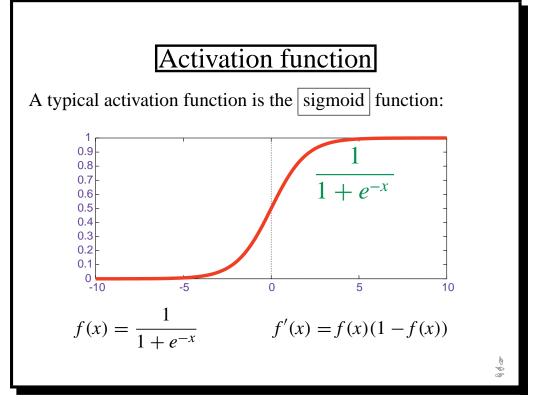
Why Neural Networks?

- As part of neuroscience, in order to understand real neural systems, researchers are simulating the neural systems of simple animals such as worms.
- It seems reasonable to try to build the functionality of the brain via the mechanism of the brain (suitably abstracted).
- The brain inspires new ways to think about computation.
- Neural networks provide a different measure of simplicity as a learning bias.

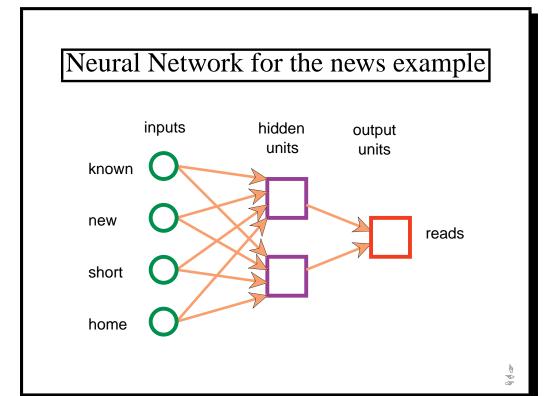


© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999





© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999



Computational Intelligence

Chapter 11, Lecture 3, Page 6

Axiomatizing the Network

- The values of the attributes are real numbers.
- Thirteen parameters w_0, \ldots, w_{12} are real numbers.
- The attributes h_1 and h_2 correspond to the values of hidden units.
- There are 13 real numbers to be learned. The hypothesis space is thus a 13-dimensional real space.
- Each point in this 13-dimensional space corresponds to a particular logic program that predicts a value for *reads* given *known*, *new*, *short*, and *home*.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 11, Lecture 3, Page 8

 $predicted_prop(Obj, reads, V) \leftarrow \\prop(Obj, h_1, I_1) \land prop(Obj, h_2, I_2) \land \\V \text{ is } f(w_0 + w_1 \times I_1 + w_2 \times I_2). \\prop(Obj, h_1, V) \leftarrow \\prop(Obj, known, I_1) \land prop(Obj, new, I_2) \land \\prop(Obj, short, I_3) \land prop(Obj, home, I_4) \land \\V \text{ is } f(w_3 + w_4 \times I_1 + w_5 \times I_2 + w_6 \times I_3 + w_7 \times I_4). \\prop(Obj, h_2, V) \leftarrow \\prop(Obj, known, I_1) \land prop(Obj, new, I_2) \land \\prop(Obj, short, I_3) \land prop(Obj, new, I_2) \land \\prop(Obj, short, I_3) \land prop(Obj, home, I_4) \land \\V \text{ is } f(w_8 + w_9 \times I_1 + w_{10} \times I_2 + w_{11} \times I_3 + w_{12} \times I_4). \\ \end{cases}$

Prediction Error

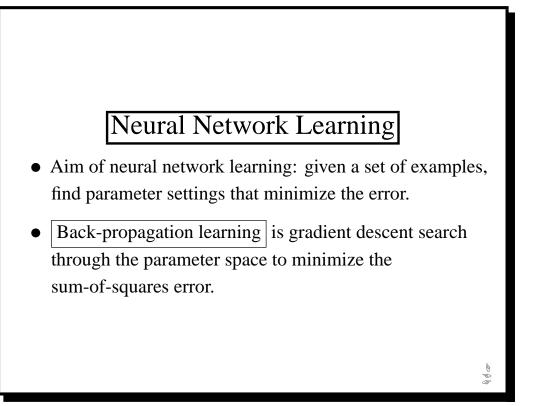
• For particular values for the parameters $\overline{w} = w_0, \dots, w_m$ and a set *E* of examples, the sum-of-squares error is

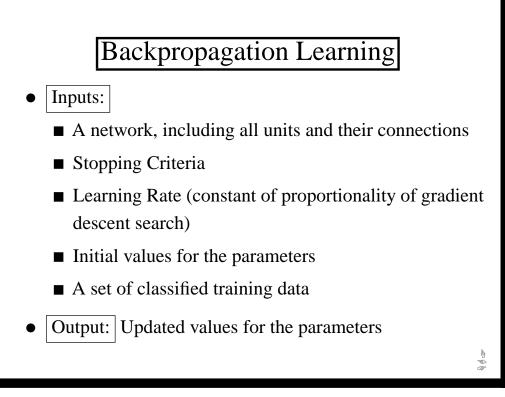
$$Error_E(\overline{w}) = \sum_{e \in E} (p_e^{\overline{w}} - o_e)^2,$$

- $p_e^{\overline{w}}$ is the predicted output by a neural network with parameter values given by \overline{w} for example *e*
- o_e is the observed output for example *e*.
- The aim of neural network learning is, given a set of examples, to find parameter settings that minimize the error.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Chapter 11, Lecture 3, Page 10

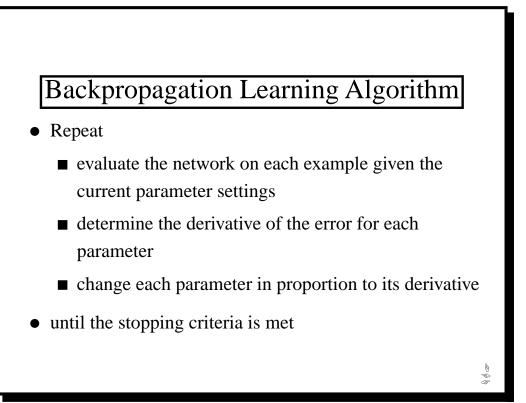




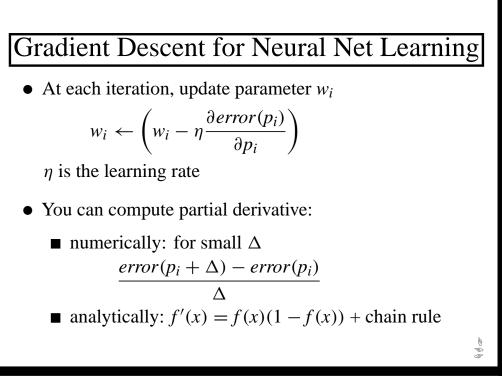
© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 11, Lecture 3, Page 12



Computational Intelligence



© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Sim	ulation	of Net	ural Net 1	Learning
Para-	iteration 0		iteration 1	iteration 8
meter	Value	Deriv	Value	Value
w ₀	0.2	0.768	-0.18	-2.98
<i>w</i> ₁	0.12	0.373	-0.07	6.88
<i>w</i> ₂	0.112	0.425	-0.10	-2.10
<i>W</i> 3	0.22	0.0262	0.21	-5.25
W4	0.23	0.0179	0.22	1.98
Error:	4.6121		4.6128	0.178

Chapter 11, Lecture 3, Page 14

 $\ensuremath{\mathbb{O}}$ David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999



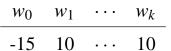
© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

Computational Intelligence

Chapter 11, Lecture 3, Page 16

Bias in neural networks and decision trees

• It's easy for a neural network to represent "at least two of I_1, \ldots, I_k are true":



This concept forms a large decision tree.

- Consider representing a conditional: "If *c* then *a* else *b*":
 - Simple in a decision tree.
 - Needs a complicated neural network to represent $(c \land a) \lor (\neg c \land b).$

Neural Networks and Logic

- Meaning is attached to the input and output units.
- There is no a priori meaning associated with the hidden units.
- What the hidden units actually represent is something that's learned.

 $\ensuremath{\mathbb{C}}$ David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999