Computational Intelligence Chapter 11, Lecture 3, Page 1

Neural Networks

e These representations are inspired by neurons and th@@r
connections in the brain.

e Artificial neurons, orunits, have inputs, and an output.
The output can be connected to the inputs of other uni

e The output of a unit is a parameterized non-linear
function of its inputs.

e Learning occurs by adjusting parameters to fit data.

e Neural networks can represent an approximation to a
function.

i
O
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Why Neural Networksf?

e As part of neuroscience, in order to understand real
neural systems, researchers are simulating the neural
systems of simple animals such as worms.

e It seems reasonable to try to build the functionality of t
brain via the mechanism of the brain (suitably
abstracted).

e The brain inspires new ways to think about computati

e Neural networks provide a different measure of
simplicity as a learning bias.
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Feed-forward neural networks

e Feed-forward neural networks are the most common
models.

e These are directed acyclic graphs:
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The Unitg

A unit with k inputs is like the parameterized logic program

prop(Obj, output V) <«
prop(Obj, ing, 11) A
prop(Obj, ing, 12) A

prop(Obj, ink, 1) A

Visf(Wg+wp x 11 +Wo x Io+ -+ 4+ Wk X ).

e |; are real-valued inputs.
e W are adjustable real parameters.
e f is an activation function.

Oog
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Activation functior

A typical activation function is thesigmoid| function:
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Neural Network for the news example

inputs hidden output

units units
known O
new O
short O
home O

V

e reads
F

A
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Axiomatizing the Network

e The values of the attributes are real numbers.
e Thirteen parametensy, ..., w2 are real numbers.

e The attributesy; andh, correspond to the values of
hidden units.

e There are 13 real numbers to be learned. The hypothegis
space is thus a 13-dimensional real space.

e Each pointin this 13-dimensional space corresponds tl a
particular logic program that predicts a value feads
givenknown new short, andhome

Oog
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predicted prop(Obj, reads V) <«
prop(Obj, hy, 17) A prop(Obj, hy, 12) A
Visf(Wwy+wyxly +woxlp).
prop(Obj, hy, V) «
prop(Obj, known I1) A prop(Obj, new, I2) A
prop(Obj, short, I3) A prop(Obj, home l4) A
Visf(wz +wWaxly +Wsxlo +Wgxlz+wrxla).
prop(Obj, hy, V) «
prop(Obj, known I1) A prop(Obj, new, I2) A
prop(Obj, short, I3) A prop(Obj, home l4) A

Visf(wg + Wgxlq + Wioxlo +Wwirxl3 —|—W12X|4%.
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Prediction Errof

e For particular values for the paramet&rs= wp, ... Wn
and a seE of examples, thesum-of-squares errois
- W 2
Errore(W) = ) (g — 0e)°,
ecE

m pY is the predicted output by a neural network with
parameter values given lyfor examplee

m O is the observed output for exampae

e The aim of neural network learning is, given a set of

examples, to find parameter settings that minimize the
error.
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Neural Network Learning

e Aim of neural network learning: given a set of exampl
find parameter settings that minimize the error.

e | Back-propagation learnings gradient descent search
through the parameter space to minimize the
sum-of-squares error.
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Backpropagation Learnimfg

e | Inputs:

m A network, including all units and their connections
m Stopping Criteria

m Learning Rate (constant of proportionality of gradie
descent search)

m Initial values for the parameters

m A set of classified training data

e | Output:; Updated values for the parameters
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Backpropagation Learning Algorithm

e Repeat

m evaluate the network on each example given the
current parameter settings

m determine the derivative of the error for each
parameter

m change each parameter in proportion to its derivati

e until the stopping criteria is met
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Gradient Descent for Neural Net Learn

e At each iteration, update parametgr

oerror (P
)
|

n is the learning rate

e You can compute partial derivative:

m numerically: for smallA
error(p; + A) — error(p;)
A
m analytically: f'(x) = f (X)(1 — f(x)) + chain rule
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Simulation of Neural Net Learning
Para- iteration O iteration 1| iteration 80
meter | Value | Deriv | Value Value
Wo 0.2 0.768 | —0.18 —2.98
W1 0.12 |0.373 | —0.07 6.88
Wo 0.112 | 0.425 | —0.10 —2.10
W3 0.22 |0.0262| 0.21 —5.25
Wy 0.23 |0.0179]| 0.22 1.98
Error: | 4.6121 4.6128 0.178
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What Can a Neural Network Represgnt
W2 Wo Wi W» Logic
- );D 1 10 10 and
5 10 10 or
Wo

5 -10 -10 nor

Output Isf (Wg +Ww1 X 11 +Wo x [9).

A single unit can’t represenxor.
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Bias in neural networks and decision tregs

e It's easy for a neural network to represent “at least two pf
l1, ..., | are true’:

-15 10 --- 10

This concept forms a large decision tree.

e Consider representing a conditional: tithena elseb”:
m Simple in a decision tree.
m Needs a complicated neural network to represent
(cAna) Vv (—CAD).
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Neural Networks and Logjc

e Meaning is attached to the input and output units.

e There is no a priori meaning associated with the hidde
units.

e What the hidden units actually represent is something
that’s learned.
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