
Computational Intelligence
A Logical Approach

Problems for Chapter 3

Here are some problems to help you understand the material inComputational Intelligence: A
Logical Approach. They are designed to help students understand the material and practice for
exams.

This file is available inhtml, or in pdf format, eitherwithout solutionsor with solutions. (The
pdf can be read using the freeacrobat readeror with recent versions ofGhostscript).

1 Defining a Simple Relation

Define the predicatehappy(P, D) that is true when personP is happy on dayD. A person is happy
on a day if

• the person is a student and the day is a holiday, or
• the person is teaching a course that has a midterm on that day, or
• the person is David and the day is either Tuesday or Sunday.

You may use whatever constant symbols (e.g., “david”) or predicate symbols (e.g., “teaching”)
you require. If the intended interpretation of a symbol isn’t obvious you must give its intended
interpretation.

2 Adding to the Electrical Domain

Suppose we want to be able to reason about electric kettles plugged into the power outlets. Suppose
the kettles need to be plugged in to a working power outlet, they need to be turned on, and be filled
with water, in order to be heating.

Using CILog write axioms that let the system determine whether kettles are heating. Your
program needs to be able to reason about multiple kettles. You should assume that the axioms are
to be added to the axioms for the electrical domain.

You need to hand in

• a description of the intended interpretation of all symbols used.

• the CILog program that works. Your program should contain enough facts about specific
kettles to test your axiomatization.

• a trace of your cilog program. Your trace should include enough information to verify your
axiomatization is correct.

http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci.html
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/probs.html
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/probs.pdf
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/probs_sols.pdf
http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.cs.wisc.edu/~ghost/index.html
http://www.cs.ubc.ca/spider/poole/ci/code/cilog/cilog_man.html
http://www.cs.ubc.ca/spider/poole/ci/code/cilog/cilog_man.html


Computational Intelligence - Problems for Chapter 3 2

t1

t2

t3

floor

p1

d1

d2d3

p2

bath

shower

sink

p3

Figure 1: The Plumbing Domain

CILog code for the electrical environment is available aselect.pl.

3 House Plumbing

Consider the domain of house plumbing represented in the diagram of Figure 1.
In this example constantsp1, p2 andp3 denote cold water pipes. Constantst1, t2 andt3 denote

taps andd1,d2 andd3 denote drainage pipes. The constantsshowerdenotes a shower,bathdenotes
a bath,sink denotes a sink andfloor denotes the floor. Figure 1 is intended to give the denotation
for the symbols.

Suppose we have as predicate symbols:
• pressurised, wherepressurised(P) is true if pipeP has mains pressure in it.
• on, whereon(T) is true if tapT is on.
• off , whereoff (T) is true if tapT is off.
• wet, wherewet(B) is true ifB is wet.
• flow, whereflow(P) is true if water is flowing throughP.
• plugged, whereplugged(S) is true ifS is either a sink or a bath and has the plug in.
• unplugged, whereunplugged(S) is true ifS is either a sink or a bath and has the plug in.

The fileplumbing.plcontains a CILog axiomatization for how water can flow down draind1 if taps
t1 andt2 are on and the bath is unplugged.

(a) Finish the axiomatization for the sink in the same manner as the axiomatization for the bath.
Test it in CILog.

(b) Axiomatize how the floor is wet if the sink overflows or the bath overflows. They overflow if
the plug is in and water is flowing in. You may invent new predicates as long as you give their

http://www.cs.ubc.ca/spider/poole/ci/code/cilog/cilog_man.html
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/elect.pl
http://www.cs.ubc.ca/spider/poole/ci/problems/ch3/plumbing.pl


Computational Intelligence - Problems for Chapter 3 3

intended interpretation. [Assume that the taps and plugs have been in the same positions for
one hour; you don’t need to axiomatize the dynamics of the turning on taps and inserting and
removing plugs.] Test it in CILog.

(c) Suppose there is a hot water system is installed to the left of tapt1. This has another tap in
the pipe leading into it, and supplies hot water to the shower and the sink (there are separate
hot and cold water taps for each). Add this to your axiomatization. Give the denotation for
all constants and predicate symbols you invent. Test it in CILog.

You need to hand in a complete listing of your program, including the intended interpretation for
all symbols used and a trace of the CILog session to show it runs.

4 Designing Video Presentations

In this question you are to write a CILog knowledge base for the design of custom video presenta-
tions.

You should assume that the video is annotated using the relation

segment(SegId, Duration, Covers)

whereSegIdis an identifier for the segment. (In a real application this will be enough information to
extract the segment from the video disk).Duration is the time of the segment (in seconds).Covers
is a list of topics that is covered by the video segment. An example of a video annotation is the
database:

segment(seg0,10,[welcome]).
segment(seg1,30,[skiing,views]).
segment(seg2,50,[welcome,computational_intelligence,robots]).
segment(seg3,40,[graphics,dragons]).
segment(seg4,50,[skiing,robots]).

A presentation is a sequence of segments. You will represent a presentation by a list of segment
identifiers.

(a) Axiomatize a predicate

presentation(MustCover, Maxtime, Segments).

That is true ifSegmentsis a presentation whose total running time is less than or equal to
Maxtimeseconds, such that all of the topics in the listMustCoverare covered by a segment
in the presentation. The aim of this predicate is to design presentations that cover a certain
number of topics within a time limit.

For example, given the query:

cilog: ask presentation([welcome,skiing,robots], 90, Segs).

should at least return the two answers (perhaps with the segments in the other order):

Answer: presentation([welcome, skiing, robots], 90, [seg0, seg4]).
Answer: presentation([welcome, skiing, robots], 90, [seg2, seg1]).

Two procedures you may find useful are:



Computational Intelligence - Problems for Chapter 3 4

% member(E,L) is true if E is in list L
member(A,[A|R]).
member(A,[H|L]) <-

member(A,L).

% notin(E,L) is true if E is not in list L
notin(E,[]).
notin(A,[B|L]) <-

A \= B &
notin(A,L).

(b) What is required for part (a) is reasonably straightforward. However, this example domain
will be used for future problems, so it is worthwhile thinking about what you may want in
such a presentation design program.

Assuming you have a good user interface and a way to actually view the presentations,
list threethings that the above program doesn’t do that you may want in such a presentation
system.

[There is no right answer for this part, you need to be creative to get full marks].


