

- Divide and conquer: to create a plan to achieve a conjunction of goals, create a plan to achieve one goal, and then create a plan to achieve the rest of the goals.
- To achieve a list of goals:
 - \succ choose one of them to achieve.
 - \succ If it is not already achieved
 - \succ choose an action that makes the goal true
 - \succ achieve the preconditions of the action
 - \succ carry out the action
 - \succ achieve the rest of the goals.

% *achieve_all(Gs, W*₁, *W*₂) is true if *W*₂ is the world resulting % from achieving every element of the list *Gs* of goals from % the world *W*₁.

achieve_all([], W_0, W_0). achieve_all(Goals, W_0, W_2) \leftarrow remove(G, Goals, Rem_Gs) \land achieve(G, W_0, W_1) \land achieve_all(Rem_Gs, W_1, W_2).

% *achieve*(*G*, *W*₀, *W*₁) is true if *W*₁ is the resulting world % after achieving goal *G* from the world *W*₀.

 $achieve(G, W, W) \leftarrow$ holds(G, W). $achieve(G, W_0, W_1) \leftarrow$ $clause(G, B) \land$ achieve $all(B, W_0, W_1)$. $achieve(G, W_0, do(Action, W_1)) \leftarrow$ achieves(Action, G) \wedge preconditions(Action, Pre) \land achieve_all(Pre, W_0, W_1).

Undoing Achieved Goals

Example: consider trying to achieve

[carrying(rob, parcel), sitting_at(rob, lab2)]

Example: consider trying to achieve

[*sitting_at(rob, lab2), carrying(rob, parcel)*]

> The STRIPS algorithm, as presented, is unsound.

Achieving one subgoal may undo already achieved subgoals.

Fixing the STRIPS Algorithm

Two ideas to make STRIPS sound:

Protect subgoals so that, once achieved, until they are needed, they cannot be undone. Let *remove* return different choices.

Reachieve subgoals that have been undone.

- > Protecting subgoals makes STRIPS incomplete.
- Reachieving subgoals finds longer plans than necessary.

Does protecting always work?

Example Suppose the robot can only carry one item at a time. Consider the goal:

 $sitting_at(rob, lab2) \land carrying(rob, parcel)$

> We cannot consider the subgoals in isolation!

