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Situation Calculus

➤ State-based representation where the states are denoted

by terms.

➤ A situation is a term that denotes a state.

➤ There are two ways to refer to states:

➣ init denotes the initial state

➣ do(A, S) denotes the state resulting from doing

action A in state S, if it is possible to do A in S.

➤ A situation also encodes how to get to the state it denotes.
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Example Situations

➤ init

➤ do(move(rob, o109, o103), init)

➤ do(move(rob, o103, mail),

do(move(rob, o109, o103),

init)).

➤ do(pickup(rob, k1),

do(move(rob, o103, mail),

do(move(rob, o109, o103),

init))).
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Using the Situation Terms

➤ Add an extra term to each dynamic predicate indicating

the situation.

➤ Example Atoms:

at(rob, o109, init)

at(rob, o103, do(move(rob, o109, o103), init))

at(k1, mail, do(move(rob, o109, o103), init))
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Axiomatizing using the Situation Calculus

➤ You specify what is true in the initial state using axioms

with init as the situation parameter.

➤ Primitive relations are axiomatized by specifying what

is true in situation do(A, S) in terms of what holds in

situation S.

➤ Derived relations are defined using clauses with a free

variable in the situation argument.

➤ Static relations are defined without reference to the

situation.
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Initial Situation

sitting_at(rob, o109, init).

sitting_at(parcel, storage, init).

sitting_at(k1, mail, init).

Derived Relations

adjacent(P1, P2, S)←
between(Door, P1, P2) ∧
unlocked(Door, S).

adjacent(lab2, o109, S).

· · ·
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When are actions possible?

poss(A, S) is true if action A is possible in situation S.

poss(putdown(Ag, Obj), S)←
carrying(Ag, Obj, S).

poss(move(Ag, Pos1, Pos2), S)←
autonomous(Ag) ∧
adjacent(Pos1, Pos2, S) ∧
sitting_at(Ag, Pos1, S).
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Axiomatizing Primitive Relations

Example: Unlocking the door makes the door unlocked:

unlocked(Door, do(unlock(Ag, Door), S))←
poss(unlock(Ag, Door), S).

Frame Axiom: No actions lock the door:

unlocked(Door, do(A, S))←
unlocked(Door, S) ∧
poss(A, S).
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Example: axiomatizing carried
Picking up an object causes it to be carried:

carrying(Ag, Obj, do(pickup(Ag, Obj), S))←
poss(pickup(Ag, Obj), S).

Frame Axiom: The object is being carried if it was being

carried before unless the action was to put down the object:

carrying(Ag, Obj, do(A, S))←
carrying(Ag, Obj, S) ∧
poss(A, S) ∧
A �= putdown(Ag, Obj).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 9

Example: sitting_at
An object is sitting at a location if:

➤ it moved to that location:

sitting_at(Obj, Pos, do(move(Obj, Pos0, Pos), S))←
poss(move(Obj, Pos0, Pos).

➤ it was put down at that location:

sitting_at(Obj, Pos, do(putdown(Ag, Obj), S))←
poss(putdown(Ag, Obj), S) ∧
at(Ag, Pos, S).

➤ it was at that location before and didn’t move and wasn’t
picked up.
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More General Frame Axioms

The only actions that undo sitting_at for object Obj is when

Obj moves somewhere or when someone is picking up Obj.

sitting_at(Obj, Pos, do(A, S))←
poss(A, S) ∧
sitting_at(Obj, Pos, S) ∧
∀Pos1 A �= move(Obj, Pos, Pos1) ∧
∀Ag A �= pickup(Ag, Obj).

The last line is equivalent to:

∼∃Ag A = pickup(Ag, Obj)
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which can be implemented as

sitting_at(Obj, Pos, do(A, S))←
· · · ∧ · · · ∧ · · · ∧
∼is_pickup_action(A, Obj).

with the clause:

is_pickup_action(A, Obj)←
A = pickup(Ag, Obj).

which is equivalent to:

is_pickup_action(pickup(Ag, Obj), Obj).
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STRIPS and the Situation Calculus

➤ Anything that can be stated in STRIPS can be stated in

the situation calculus.

➤ The situation calculus is more powerful. For example,

the “drop everything” action.

➤ To axiomatize STRIPS in the situation calculus, we can

use holds(C, S) to mean that C is true in situation S.
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holds(C, do(A, W))←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold in W .

add_list(A, AL) ∧ C is on the

member(C, AL). addlist of A.

holds(C, do(A, W))←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold in W .

delete_list(A, DL) ∧ C isn’t on the

notin(C, DL) ∧ deletelist of A.

holds(C, W). C held before A.
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