STRIPS Representation

- State-based view of time.
- > The actions are external to the logic.
- Given a state and an action, the STRIPS representation is used to determine
 - \succ whether the action can be carried out in the state
 - \succ what is true in the resulting state

STRIPS Representation: Idea

- > Predicates are primitive or derived.
- Use normal rules for derived predicates.
- The STRIPS representation is used to determine the truth values of primitive predicates based on the previous state and the action.
- Based on the idea that most predicates are unaffected by a single action.
 - STRIPS assumption: Primitive relations not mentioned in the description of the action stay unchanged.

STRIPS Representation of an action

The **STRIPS** representation for an action consists of:

preconditions A list of atoms that need to be true for the action to occur

delete list A list of those primitive relations no longer true after the action

add list A list of the primitive relations made true by the action

STRIPS Representation of "pickup"

The action *pickup(Ag, Obj)* can be defined by:

preconditions [autonomous(Ag), $Ag \neq Obj$, at(Ag, Pos), sitting_at(Obj, Pos)]

delete list [sitting_at(Obj, Pos)]

add list [*carrying*(*Ag*, *Obj*)]

STRIPS Representation of "move"

The action $move(Ag, Pos_1, Pos_2)$ can be defined by:

delete list [*sitting_at*(*Ag*, *Pos*₁)]

add list [sitting_at(Ag, Pos₂)]

Example Transitions

sitting_at(rob, o109).

sitting_at(parcel, storage).

sitting_at(k1, mail).

move(rob, o109, storage)

pickup(rob, parcel)

sitting_at(rob, storage). sitting_at(parcel, storage). sitting_at(k1, mail). sitting_at(rob, storage). carrying(rob, parcel). sitting_at(k1, mail).

