

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't? What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply *false*, where *false* is an atom that is false in all interpretations.
- This will allow us to make conclusions from a contradiction.
- A definite clause knowledge base is always consistent. This won't be true with the rules that imply *false*.

Horn clauses

An integrity constraint is a clause of the form

false $\leftarrow a_1 \land \ldots \land a_k$

where the a_i are atoms and *false* is a special atom that is false in all interpretations.

► A Horn clause is either a definite clause or an integrity constraint.

Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that
 is true in interpretation *I* if α is false in *I*, and
 is false in interpretation *I* if α is true in *I*.

Example:

$$KB = \left\{ \begin{array}{l} false \leftarrow a \land b. \\ a \leftarrow c. \\ b \leftarrow c. \end{array} \right\} \qquad KB \models \neg c.$$

Disjunctive Conclusions

> Disjunctions can follow from a Horn clause KB.

- The disjunction of α and β , written $\alpha \vee \beta$, is
 - > true in interpretation *I* if α is true in *I* or β is true in *I* (or both are true in *I*).
 - > false in interpretation I if α and β are both false in I.

Example:

$$KB = \begin{cases} false \leftarrow a \land b. \\ a \leftarrow c. \\ b \leftarrow d. \end{cases}$$

 $KB \models \neg c \lor \neg d.$

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.
- A conflict of *KB* is a set of assumables that, given *KB* imply *false*.
- A minimal conflict is a conflict such that no strict subset is also a conflict.

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$KB = \begin{cases} false \leftarrow a \land b. \\ a \leftarrow c. \\ b \leftarrow d. \\ b \leftarrow e. \end{cases}$$

 \blacktriangleright {*c*, *d*} is a conflict

- \blacktriangleright {*c*, *e*} is a conflict
- \blacktriangleright {c, d, e, h} is a conflict

Using Conflicts for Diagnosis

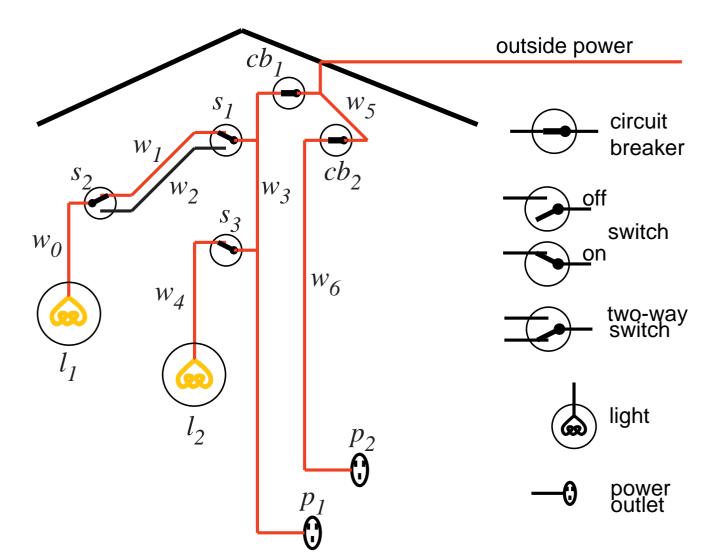
- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

 $false \Leftarrow dark(L) \& lit(L).$ $false \Leftarrow dead(L) \& live(L).$

Make *ok* assumable: assumable(ok(X)).

Suppose switches s_1 , s_2 , and s_3 are all up: $up(s_1)$. $up(s_2)$. $up(s_3)$.

Electrical Environment



 $lit(L) \Leftarrow light(L) \& ok(L) \& live(L).$ $live(W) \Leftarrow connected_to(W, W_1) \& live(W_1).$ $live(outside) \Leftarrow true.$ $light(l_1) \Leftarrow true.$ $light(l_2) \Leftarrow true.$ connected_to(l_1, w_0) \Leftarrow true. connected_to(w_0, w_1) $\Leftarrow up(s_2) \& ok(s_2)$. connected_to(w_1, w_3) $\Leftarrow up(s_1) \& ok(s_1)$. connected_to(w_3, w_5) $\Leftarrow ok(cb_1)$. connected_to(w_5 , outside) \Leftarrow true.

For the user has observed l_1 and l_2 are both dark: $dark(l_1)$. $dark(l_2)$.

There are two minimal conflicts:

 $\{ok(cb_1), ok(s_1), ok(s_2), ok(l_1)\}$ and $\{ok(cb_1), ok(s_3), ok(l_2)\}.$

You can derive:

$$\neg ok(cb_1) \lor \neg ok(s_1) \lor \neg ok(s_2) \lor \neg ok(l_1)$$
$$\neg ok(cb_1) \lor \neg ok(s_3) \lor \neg ok(l_2).$$

 \blacktriangleright Either cb_1 is broken or there is one of six double faults.

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.

Example: For the proceeding example there are seven minimal diagnoses: {ok(cb₁)}, {ok(s₁), ok(s₃)}, {ok(s₁), ok(l₂)}, {ok(s₂), ok(s₃)},...

Meta-interpreter to find conflicts

% *dprove*(*G*, *D*₀, *D*₁) is true if list *D*₀ is an ending of list *D*₁ % such that assuming the elements of *D*₁ lets you derive *G*.

dprove(true, D, D). $dprove((A \& B), D_1, D_3) \leftarrow$ $dprove(A, D_1, D_2) \wedge dprove(B, D_2, D_3).$ $dprove(G, D, [G|D]) \leftarrow assumable(G).$ $dprove(H, D_1, D_2) \leftarrow$ $(H \Leftarrow B) \land dprove(B, D_1, D_2).$ $conflict(C) \leftarrow dprove(false, [], C).$

false \Leftarrow *a*. $a \Leftarrow b \& c$. $b \Leftarrow d$. $b \Leftarrow e$. $c \Leftarrow f$. $c \Leftarrow g$. $e \leftarrow h \& w$. $e \Leftarrow g$. $w \Leftarrow d$. assumable d, f, g, h.

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A \rangle$, where *a* is an atom and *A* is a set of assumables that imply *a*.
- > Initially, conclusion set $C = \{ \langle a, \{a\} \rangle : a \text{ is assumable} \}.$
- ► If there is a rule $h \leftarrow b_1 \land \ldots \land b_m$ such that for each b_i there is some A_i such that $\langle b_i, A_i \rangle \in C$, then $\langle h, A_1 \cup \ldots \cup A_m \rangle$ can be added to *C*.
- ► If $\langle a, A_1 \rangle$ and $\langle a, A_2 \rangle$ are in *C*, where $A_1 \subset A_2$, then $\langle a, A_2 \rangle$ can be removed from *C*.
- ► If $\langle false, A_1 \rangle$ and $\langle a, A_2 \rangle$ are in *C*, where $A_1 \subseteq A_2$, then $\langle a, A_2 \rangle$ can be removed from *C*.

Bottom-up Conflict Finding Code

$$C := \{ \langle a, \{a\} \rangle : a \text{ is assumable } \};$$
repeat

select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in *T* such that $\langle b_i, A_i \rangle \in C$ for all *i* and there is no $\langle h, A' \rangle \in C$ or $\langle false, A' \rangle \in C$ such that $A' \subseteq A$ where $A = A_1 \cup \ldots \cup A_m$; $C := C \cup \{\langle h, A \rangle\}$

Remove any elements of *C* that can now be pruned; **until** no more selections are possible

Integrity Constraints in Databases

- Database designers can use integrity constraints to specify constraints that should never be violated.
 - Example: A student can't have two different grades for the same course.

 $false \leftarrow$

 $grade(St, Course, Gr_1) \land$ $grade(St, Course, Gr_2) \land$ $Gr_1 \neq Gr_2.$

When false is derived, HOW can be used to debug the KB.