Integrity Constraints

$>$ In the electrical domain, what if we predict that a light should be on, but observe that it isn't? What can we conclude?
> We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.
$>$ This will allow us to make conclusions from a contradiction.

- A definite clause knowledge base is always consistent. This won't be true with the rules that imply false.

Horn clauses

- An integrity constraint is a clause of the form

$$
\text { false } \leftarrow a_{1} \wedge \ldots \wedge a_{k}
$$

where the a_{i} are atoms and false is a special atom that is false in all interpretations.

A Horn clause is either a definite clause or an integrity constraint.

Negative Conclusions

$>$ Negations can follow from a Horn clause KB.
The negation of α, written $\neg \alpha$ is a formula that $>$ is true in interpretation I if α is false in I, and $>$ is false in interpretation I if α is true in I.

Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow c .
\end{array}\right\} \quad K B \models \neg c
$$

Disjunctive Conclusions

$>$ Disjunctions can follow from a Horn clause KB.
The disjunction of α and β, written $\alpha \vee \beta$, is
$>$ true in interpretation I if α is true in I or β is true in I (or both are true in I).
$>$ false in interpretation I if α and β are both false in I.
Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c .
\end{array}\right\} \quad K B \models \neg c \vee \neg d
$$

Questions and Answers in Horn KBs

An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.

A conflict of $K B$ is a set of assumables that, given $K B$ imply false.

A minimal conflict is a conflict such that no strict subset is also a conflict.

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

$>\{c, d\}$ is a conflict
$>\{c, e\}$ is a conflict
$>\{c, d, e, h\}$ is a conflict

Using Conflicts for Diagnosis

Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
$>$ A light can't be both lit and dark. An outlet can't be both live and dead:

$$
\begin{aligned}
& \text { false } \Leftarrow \operatorname{dark}(L) \& \operatorname{lit}(L) \\
& \text { false } \Leftarrow \operatorname{dead}(L) \& \operatorname{live}(L) .
\end{aligned}
$$

> Make $o k$ assumable: assumable $(o k(X))$.
$>$ Suppose switches s_{1}, s_{2}, and s_{3} are all up: $u p\left(s_{1}\right) . u p\left(s_{2}\right) . u p\left(s_{3}\right)$.

Electrical Environment

$\operatorname{lit}(L) \Leftarrow \operatorname{light}(L) \& o k(L) \& \operatorname{live}(L)$.
$\operatorname{live}(W) \Leftarrow$ connected_to $\left(W, W_{1}\right) \&$ live $\left(W_{1}\right)$. live (outside) \Leftarrow true.
$\operatorname{light}\left(l_{1}\right) \Leftarrow$ true.
$\operatorname{light}\left(l_{2}\right) \Leftarrow$ true.
connected_to $\left(l_{1}, w_{0}\right) \Leftarrow$ true.
connected_to $\left(w_{0}, w_{1}\right) \Leftarrow u p\left(s_{2}\right) \& o k\left(s_{2}\right)$.
connected_to $\left(w_{1}, w_{3}\right) \Leftarrow u p\left(s_{1}\right) \& o k\left(s_{1}\right)$.
connected_to $\left(w_{3}, w_{5}\right) \Leftarrow o k\left(c b_{1}\right)$.
connected_to $\left(w_{5}\right.$, outside $) \Leftarrow$ true.
$>$ If the user has observed l_{1} and l_{2} are both dark: $\operatorname{dark}\left(l_{1}\right) . \operatorname{dark}\left(l_{2}\right)$.

There are two minimal conflicts:

$$
\begin{aligned}
& \left\{o k\left(c b_{1}\right), o k\left(s_{1}\right), o k\left(s_{2}\right), o k\left(l_{1}\right)\right\} \text { and } \\
& \left\{o k\left(c b_{1}\right), o k\left(s_{3}\right), o k\left(l_{2}\right)\right\} .
\end{aligned}
$$

> You can derive:

$$
\begin{aligned}
& \neg o k\left(c b_{1}\right) \vee \neg o k\left(s_{1}\right) \vee \neg o k\left(s_{2}\right) \vee \neg o k\left(l_{1}\right) \\
& \neg o k\left(c b_{1}\right) \vee \neg o k\left(s_{3}\right) \vee \neg o k\left(l_{2}\right) .
\end{aligned}
$$

$>$ Either $c b_{1}$ is broken or there is one of six double faults.

A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.

- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
> Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
$>$
Example: For the proceeding example there are seven minimal diagnoses: $\left\{o k\left(c b_{1}\right)\right\},\left\{o k\left(s_{1}\right), o k\left(s_{3}\right)\right\}$, $\left\{o k\left(s_{1}\right), o k\left(l_{2}\right)\right\},\left\{o k\left(s_{2}\right), o k\left(s_{3}\right)\right\}, \ldots$

Meta-interpreter to find conflicts

\% dprove $\left(G, D_{0}, D_{1}\right)$ is true if list D_{0} is an ending of list D_{1} \% such that assuming the elements of D_{1} lets you derive G.
dprove (true, $D, D)$.
dprove $\left((A \& B), D_{1}, D_{3}\right) \leftarrow$ $\operatorname{dprove}\left(A, D_{1}, D_{2}\right) \wedge \operatorname{dprove}\left(B, D_{2}, D_{3}\right)$.
dprove $(G, D,[G \mid D]) \leftarrow \operatorname{assumable}(G)$.
dprove $\left(H, D_{1}, D_{2}\right) \leftarrow$

$$
(H \Leftarrow B) \wedge \operatorname{dprove}\left(B, D_{1}, D_{2}\right)
$$

conflict $(C) \leftarrow$ dprove(false, [], $C)$.
false $\Leftarrow a$.
$a \Leftarrow b \& c$.
$b \Leftarrow d$.
$b \Leftarrow e$.
$c \Leftarrow f$.
$c \Leftarrow g$.
$e \Leftarrow h \& w$.
$e \Leftarrow g$.
$w \Leftarrow d$.
assumable d, f, g, h.

Bottom-up Conflict Finding

$>$ Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
$>$ Initially, conclusion set $C=\{\langle a,\{a\}\rangle: a$ is assumable $\}$.
$>$ If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
\rangle If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.
\rangle If $\left\langle\right.$ false, $\left.A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subseteq A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.

Bottom-up Conflict Finding Code

$C:=\{\langle a,\{a\}\rangle: a$ is assumable $\} ;$
repeat
select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in T such that $\left\langle b_{i}, A_{i}\right\rangle \in C$ for all i and there is no $\left\langle h, A^{\prime}\right\rangle \in C$ or $\left\langle\right.$ false, $\left.A^{\prime}\right\rangle \in C$ such that $A^{\prime} \subseteq A$ where $A=A_{1} \cup \ldots \cup A_{m}$;
$C:=C \cup\{\langle h, A\rangle\}$
Remove any elements of C that can now be pruned; until no more selections are possible

Integrity Constraints in Databases

> Database designers can use integrity constraints to specify constraints that should never be violated.

Example: A student can't have two different grades for the same course.
false \leftarrow

$$
\begin{aligned}
& \operatorname{grade}\left(S t, \text { Course }, G r_{1}\right) \wedge \\
& \operatorname{grade}\left(S t, \text { Course } G r_{2}\right) \wedge \\
& G r_{1} \neq G r_{2} .
\end{aligned}
$$

When false is derived, HOW can be used to debug the KB.

