
Computational Intelligence Chapter 6, Lecture 1, Page 1

Knowledge Engineering

Overview:

➤ Roles of people involved in a knowledge-based system

➤ How representation and reasoning systems interact with

humans.

➤ Knowledge-based interaction and debugging tools

➤ Building representation and reasoning systems

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 2

Knowledge-based system architecture

Domain
Expert

Knowledge
Engineer

Knowledge
Base

Inference
Engine

User
 Interface User

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 3

Roles for people in a KBS

➤ Software engineersbuild the inference engine and user

interface.

➤ Knowledge engineersdesign, build, and debug the

knowledge base in consultation with domain experts.

➤ Domain expertsknow about the domain, but nothing

about particular cases or how the system works.

➤ Users have problems for the system, know about

particular cases, but not about how the system works or

the domain.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 4

Users

How can users provide knowledge when

➤ they don’t know the internals of the system

➤ they aren’t experts in the domain

➤ they don’t know what information is relevant

➤ they don’t know the syntax of the system

➤ but they have essential information about the particular

case of interest?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 5

Querying the User

➤ The system can determine what information is relevant

and ask the user for the particular information.

➤ A top-down derivation can determine what information is

relevant. There are three types of goals:

➣ Goals for which the user isn’t expected to know the

answer, so the system never asks.

➣ Goals for which the user should know the answer, and

for which they have not already provided an answer.

➣ Goals for which the user has already provided an

answer.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 6

Yes/No questions

➤ The simplest form of a question is a ground query.

➤ Ground queries require an answer of “yes” or “no”.

➤ The user is only asked a question if

➣ the question is askable, and

➣ the user hasn’t previously answered the question.

➤ When the user has answered a question, the answer needs

to be recorded.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 7

Electrical Domain
In the electrical domain:

➤ The designer of a house:

➣ will know how switches and lights are connected by

wires,

➣ won’t know if the light switches are up or down.

➤ A new resident in a house:

➣ won’t know how switches and lights are connected by

wires,

➣ will know (or can observe) if the light switches are up

or down.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 8

Functional Relations

➤ You probably don’t want to ask ?age(fred, 0),

?age(fred, 1), ?age(fred, 2), . . .

➤ You probably want to ask for Fred’s age once, and

succeed for queries for that age and fail for other queries.

➤ This exploits the fact thatage is a functional relation.

➤ Relationr(X, Y) is functional if, for everyX there

exists a uniqueY such thatr(X, Y) is true.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 9

Getting information from a user

➤ The user may not know the vocabulary that is expected

by the knowledge engineer.

➤ Either:

➣ The system designer provides a menu of items from

which the user has to select the best fit.

➣ The user can provide free-form answers. The system

needs a large dictionary to map the responses into the

internal forms expected by the system.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 10

More General Questions

Example: For the subgoalp(a, X, f (Z)) the user can be

asked:

for which X, Z is p(a, X, f (Z)) true?

➤ Should users be expected to give all instances which are

true, or should they give the instances one at a time, with

the system prompting for new instances?

Example: For whichS, C is enrolled(S, C) true?

➤ Psychological issues are important.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 11

Re-asking Questions
When should the system repeat or not ask a question?

Example: Query Ask? Response

?p(X) yes p(f (Z))

?p(f (c)) no

?p(a) yes yes

?p(X) yes no

?p(c) no

Don’t ask a question that is more specific than a
query to which either a positive answer has already
been given or the user has repliedno.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 12

Delaying Asking the User

➤ Should the system ask the question as soon as it’s

encountered, or should it delay the goal until more

variables are bound?

➤ Example consider query ?p(X) & q(X), wherep(X) is

askable.

➣ If p(X) succeeds for many instances ofX andq(X)

succeeds for few (or no) instances ofX it’s better to

delay askingp(X) and proveq(X) first.

➣ If p(X) succeeds for few instances ofX andq(X)

succeeds for many instances ofX, don’t delay.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 13

Multiple Information Sources
Asking the user is just one instance of using multiple
information sources. There are many types of subgoals:

➤ those the system has rules about

➤ those the system has facts about

➤ those that the user should be able to answer

➤ those that a web site may be able to answer (e.g., flight
arrival times)

➤ those that a database may be able to answer (e.g.,
someone’s phone number, or the meaning of a word)

Each information source has its own characteristics.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 6, Lecture 1, Page 14

Assumptions

➤ Some subgoals you don’t know if they are true; they are

assumptionsor hypotheses.

➤ You want to collect the assumptions needed to prove the

goal.

➤ Example: in the electrical domain,ok may be

assumable.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

