Choosing Objects and Relations

How to represent: "Pen \#7 is red."

Choosing Objects and Relations

How to represent: "Pen \#7 is red."
$\operatorname{red}\left(p e n_{7}\right)$. It's easy to ask "What's red?"
Can't ask "what is the color of pen7?"

Choosing Objects and Relations

How to represent: "Pen \#7 is red."
$\operatorname{red}\left(\right.$ pen $\left._{7}\right)$. It's easy to ask "What's red?"
Can't ask "what is the color of pen7?"
$\operatorname{color}\left(\right.$ pen $_{7}$, red $) . ~ I t ' s ~ e a s y ~ t o ~ a s k ~ " W h a t ' s ~ r e d ? " ~ " ~$
It's easy to ask "What is the color of pen7?"
Can't ask "What property of pen $_{7}$ has value red?"

Choosing Objects and Relations

How to represent: "Pen \#7 is red."
$\operatorname{red}\left(\right.$ pen $\left._{7}\right)$. It's easy to ask "What's red?" Can't ask "what is the color of pen7?"
$\operatorname{color}\left(\right.$ pen $_{7}$, red $)$. It's easy to ask "What's red?" It's easy to ask "What is the color of pen7?"
Can't ask "What property of pen ${ }_{7}$ has value red?"
$\operatorname{prop}\left(\right.$ pen $_{7}$, color, red). It's easy to ask all these questions.

Choosing Objects and Relations

How to represent: "Pen \#7 is red."
$\operatorname{red}\left(\right.$ pen $\left._{7}\right)$. It's easy to ask "What's red?" Can't ask "what is the color of pen7?"
$\operatorname{color}\left(\right.$ pen $_{7}$, red $) . ~ I t ' s ~ e a s y ~ t o ~ a s k ~ " W h a t ' s ~ r e d ? " ~$ It's easy to ask "What is the color of pen7?"
Can't ask "What property of pen ${ }_{7}$ has value red?"
$\operatorname{prop}\left(\right.$ pen $_{7}$, color, red). It's easy to ask all these questions. prop (Object, Attribute, Value) is the only relation needed: object-attribute-value representation

Universality of prop

To represent "a is a parcel"
$>\operatorname{prop}\left(a, i s _a, \operatorname{parcel}\right)$, where $i s_{-} a$ is a special attribute
$>\operatorname{prop}(a$, parcel, true $)$, where parcel is a Boolean attribute

Reification

To represent scheduled (cs422, 2, 1030, cc208). "section 2 of course $c s 422$ is scheduled at 10:30 in room $c c 208$."
$>$ Let $b 123$ name the booking:
prop(b123, course, cs422).
prop(b123, section, 2). prop(b123, time, 1030). prop(b123, room, cc208).
> We have reified the booking.
$>$ Reify means: to make into an object.

Semantics Networks

When you only have one relation, prop, it can be omitted without loss of information.

Write

$$
\operatorname{prop}(O b j, \text { Att, Value })
$$

as

An Example Semantic Network

Equivalent Logic Program

prop(comp_2347, owned_by, craig).
prop(comp_2347, deliver_to, ming).
prop(comp_2347, model, lemon_laptop_10000). prop(comp_2347, brand, lemon_computer). prop(comp_2347, logo, lemon_disc). prop(comp_2347, color, brown). prop(craig, room, r107). prop (r107, building, comp_sci).

The properties and values for a single object can be grouped together into a frame.

We can write this as a list of attribute $=$ value or slot $=$ filler .

$$
\begin{aligned}
& {[\text { owned_by }=\text { craig, }} \\
& \text { deliver_to }=\text { ming, } \\
& \text { model }=\text { lemon_laptop_10000, } \\
& \text { brand }=\text { lemon_computer }, \\
& \text { logo }=\text { lemon_disc, } \\
& \text { color }=\text { brown, } \\
& \cdots]
\end{aligned}
$$

Primitive versus Derived Relations

Primitive knowledge is that which is defined explicitly by facts.

Derived knowledge is knowledge defined by rules.
Example: All lemon laptops may have have size $=$ medium. Associate this property with the class, not the individual.

Allow a special attribute is_a between an individual and a class or between two classes that allows for property inheritance .

A Structured Semantic Network

Logic of Property Inheritance

An arc $\xrightarrow{p} n$ from a class c means every individual in the class has value n of attribute p :

$$
\begin{aligned}
& \operatorname{prop}(O b j, p, n) \leftarrow \\
& \quad \operatorname{prop}\left(O b j, i s_{-} a, c\right) .
\end{aligned}
$$

Example:

$\operatorname{prop}(X$, weight, light $) \leftarrow$
$\operatorname{prop}(X$, is_a, lemon_laptop_10000).
$\operatorname{prop}(X$, is_a, lemon_computer $) \leftarrow$
$\operatorname{prop}(X$, is_a, lemon_laptop_10000).

Multiple Inheritance

- An individual is usually a member of more than one class. For example, the same persion may be a mother, a teacher, a football coach,....

The individual can inherit the properties of all of the classes it is a member of: multiple inheritance.
> If there are default values, we can have a problem when an individual inherits conflicting defaults from the different classes: multiple inheritance problem.

Choosing Primitive and Derived Relations

- Associate an attribute value with the most general class with that attribute value.

D Don't associate contingent properties of a class with the class. For example, if all of current computers just happen to be brown.

Axiomatize in the causal direction. You want knowledge that is stable as the world changes.

