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Reasoning with Variables

➤ An instanceof an atom or a clause is obtained by

uniformly substituting terms for variables.

➤ A substitution is a finite set of the form

{V1/t1, . . . , Vn/tn}, where eachVi is a distinct variable

and eachti is a term.

➤ The application of a substitution

σ = {V1/t1, . . . , Vn/tn} to an atom or clausee, written

eσ , is the instance ofewith every occurrence ofVi

replaced byti .
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Application Examples
The following are substitutions:

➤ σ1 = {X/A, Y/b, Z/C, D/e}
➤ σ2 = {A/X, Y/b, C/Z, D/e}
➤ σ3 = {A/V, X/V, Y/b, C/W, Z/W, D/e}
The following shows some applications:

➤ p(A, b, C, D)σ1 = p(A, b, C, e)

➤ p(X, Y, Z, e)σ1 = p(A, b, C, e)

➤ p(A, b, C, D)σ2 = p(X, b, Z, e)

➤ p(X, Y, Z, e)σ2 = p(X, b, Z, e)

➤ p(A, b, C, D)σ3 = p(V, b, W, e)

➤ p(X, Y, Z, e)σ3 = p(V, b, W, e)
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Unifiers

➤ Substitutionσ is a unifier of e1 ande2 if e1σ = e2σ .

➤ Substitutionσ is a most general unifier(mgu) ofe1 and

e2 if

➣ σ is a unifier ofe1 ande2; and

➣ if substitutionσ ′ also unifiese1 ande2, theneσ ′ is an

instance ofeσ for all atomse.

➤ If two atoms have a unifier, they have a most general

unifier.
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Unification Example
p(A, b, C, D) andp(X, Y, Z, e) have as unifiers:
➤ σ1 = {X/A, Y/b, Z/C, D/e}
➤ σ2 = {A/X, Y/b, C/Z, D/e}
➤ σ3 = {A/V, X/V, Y/b, C/W, Z/W, D/e}
➤ σ4 = {A/a, X/a, Y/b, C/c, Z/c, D/e}
➤ σ5 = {X/A, Y/b, Z/A, C/A, D/e}
➤ σ6 = {X/A, Y/b, Z/C, D/e, W/a}
The first three are most general unifiers.

The following substitutions are not unifiers:
➤ σ7 = {Y/b, D/e}
➤ σ8 = {X/a, Y/b, Z/c, D/e}

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 6, Page 5

Bottom-up procedure

➤ You can carry out the bottom-up procedure on the ground

instances of the clauses.

➤ Soundness is a direct corollary of the ground soundness.

➤ For completeness, we build a canonical minimal model.

We need a denotation for constants:

Herbrand interpretation:The domain is the set of

constants (we invent one if the KB or query doesn’t

contain one). Each constant denotes itself.
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Definite Resolution with Variables
A generalized answer clauseis of the form

yes(t1, . . . , tk) ← a1 ∧ a2 ∧ . . . ∧ am,

wheret1, . . . , tk are terms anda1, . . . , am are atoms.

The SLD resolutionof this generalized answer clause onai

with the clause

a ← b1 ∧ . . . ∧ bp,

whereai anda have most general unifierθ , is

(yes(t1, . . . , tk) ←
a1∧ . . .∧ai−1 ∧ b1∧ . . .∧bp ∧ ai+1∧ . . .∧am)θ.
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To solve query ?B with variablesV1, . . . , Vk:

Setac to generalized answer clauseyes(V1, . . . , Vk) ← B;

While ac is not an answer do

Supposeac is yes(t1, . . . , tk) ← a1 ∧ a2 ∧ . . . ∧ am

Select atomai in the body ofac;

Choose clausea ← b1 ∧ . . . ∧ bp in KB;

Rename all variables ina ← b1 ∧ . . . ∧ bp;

Let θ be the most general unifier ofai anda.

Fail if they don’t unify;

Setac to (yes(t1, . . . , tk) ← a1 ∧ . . . ∧ ai−1∧
b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)θ

end while.
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Example

live(Y) ← connected_to(Y, Z) ∧ live(Z). live(outside).

connected_to(w6, w5). connected_to(w5, outside).

?live(A).

yes(A) ← live(A).

yes(A) ← connected_to(A, Z1) ∧ live(Z1).

yes(w6) ← live(w5).

yes(w6) ← connected_to(w5, Z2) ∧ live(Z2).

yes(w6) ← live(outside).

yes(w6) ← .
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Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion ofterm. So that a term can be

f (t1, . . . , tn) wheref is a function symboland theti are

terms.

In an interpretation and with a variable assignment, term

f (t1, . . . , tn) denotes an individual in the domain.

With one function symbol and one constant we can refer to

infinitely many individuals.
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Lists
A list is an ordered sequence of elements.

Let’s use the constantnil to denote the empty list, and the
function cons(H, T) to denote the list with first elementH

and rest-of-listT. These are not built-in.

The list containingdavid, alan andrandy is

cons(david, cons(alan, cons(randy, nil)))

append(X, Y, Z) is true if listZ contains the elements ofX

followed by the elements ofY

append(nil, Z, Z).

append(cons(A, X), Y, cons(A, Z))← append(X, Y, Z).
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