Reasoning with Variables

An instance of an atom or a clause is obtained by uniformly substituting terms for variables.

A substitution is a finite set of the form $\{V_1/t_1, \ldots, V_n/t_n\}$, where each V_i is a distinct variable and each t_i is a term.

The application of a substitution

 $\sigma = \{V_1/t_1, \dots, V_n/t_n\}$ to an atom or clause *e*, written $e\sigma$, is the instance of *e* with every occurrence of V_i replaced by t_i .

The following are substitutions:

The following shows some applications:

$$p(A, b, C, D)\sigma_1 = p(A, b, C, e)$$
 $p(X, Y, Z, e)\sigma_1 = p(A, b, C, e)$
 $p(A, b, C, D)\sigma_2 = p(X, b, Z, e)$
 $p(X, Y, Z, e)\sigma_2 = p(X, b, Z, e)$
 $p(A, b, C, D)\sigma_3 = p(V, b, W, e)$
 $p(X, Y, Z, e)\sigma_3 = p(V, b, W, e)$

- Substitution σ is a unifier of e_1 and e_2 if $e_1\sigma = e_2\sigma$.
- Substitution σ is a most general unifier (mgu) of e_1 and e_2 if
 - $\succ \sigma$ is a unifier of e_1 and e_2 ; and
 - > if substitution σ' also unifies e_1 and e_2 , then $e\sigma'$ is an instance of $e\sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.

Unification Example

p(A, b, C, D) and p(X, Y, Z, e) have as unifiers: $\succ \sigma_1 = \{X/A, Y/b, Z/C, D/e\}$ $\succ \sigma_2 = \{A/X, Y/b, C/Z, D/e\}$ $\succ \sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$ $\succ \sigma_4 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$ $\sim \sigma_5 = \{X/A, Y/b, Z/A, C/A, D/e\}$ $\succ \sigma_6 = \{X/A, Y/b, Z/C, D/e, W/a\}$

The first three are most general unifiers.

The following substitutions are not unifiers:

$$\sigma_7 = \{Y/b, D/e\}$$
 $\sigma_8 = \{X/a, Y/b, Z/c, D/e\}$

Bottom-up procedure

You can carry out the bottom-up procedure on the ground instances of the clauses.

Soundness is a direct corollary of the ground soundness.

For completeness, we build a canonical minimal model. We need a denotation for constants:

Herbrand interpretation: The domain is the set of constants (we invent one if the KB or query doesn't contain one). Each constant denotes itself.

Definite Resolution with Variables

A generalized answer clause is of the form

$$yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m,$$

where t_1, \ldots, t_k are terms and a_1, \ldots, a_m are atoms.

The **SLD** resolution of this generalized answer clause on a_i with the clause

$$a \leftarrow b_1 \wedge \ldots \wedge b_p,$$

where a_i and a have most general unifier θ , is

$$(yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge \ldots \wedge a_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m)\theta.$$

To solve query ?B with variables V_1, \ldots, V_k :

- Set *ac* to generalized answer clause $yes(V_1, ..., V_k) \leftarrow B$; While *ac* is not an answer do
 - Suppose ac is $yes(t_1, \ldots, t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m$ Select atom a_i in the body of ac; Choose clause $a \leftarrow b_1 \land \ldots \land b_p$ in *KB*; Rename all variables in $a \leftarrow b_1 \land \ldots \land b_p$; Let θ be the most general unifier of a_i and a. Fail if they don't unify; Set ac to $(yes(t_1, \ldots, t_k) \leftarrow a_1 \land \ldots \land a_{i-1} \land$ $b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m)\theta$

end while.

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z). \ live(outside)$ connected_to(w₆, w₅). connected_to(w₅, outside). ?live(A).

 $yes(A) \leftarrow live(A)$. $yes(A) \leftarrow connected_to(A, Z_1) \land live(Z_1).$ $yes(w_6) \leftarrow live(w_5).$ $yes(w_6) \leftarrow connected_to(w_5, Z_2) \land live(Z_2).$ $yes(w_6) \leftarrow live(outside).$ $yes(w_6) \leftarrow .$

Function Symbols

- Often we want to refer to individuals in terms of components.
- Examples: 4:55 p.m. English sentences. A classlist.
- We extend the notion of term. So that a term can be $f(t_1, \ldots, t_n)$ where f is a function symbol and the t_i are terms.
- In an interpretation and with a variable assignment, term $f(t_1, \ldots, t_n)$ denotes an individual in the domain.
- With one function symbol and one constant we can refer to infinitely many individuals.

- A list is an ordered sequence of elements.
- Let's use the constant *nil* to denote the empty list, and the function cons(H, T) to denote the list with first element *H* and rest-of-list *T*. These are not built-in.
- The list containing *david*, *alan* and *randy* is

cons(david, cons(alan, cons(randy, nil)))

append(X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y

append(nil, Z, Z).

 $append(cons(A, X), Y, cons(A, Z)) \leftarrow append(X, Y, Z)$