Reasoning with Variables

- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
$>$ A substitution is a finite set of the form $\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$, where each V_{i} is a distinct variable and each t_{i} is a term.
> The application of a substitution $\sigma=\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$ to an atom or clause e, written $e \sigma$, is the instance of e with every occurrence of V_{i} replaced by t_{i}.

Application Examples

The following are substitutions:
$>\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
$>\sigma_{2}=\{A / X, Y / b, C / Z, D / e\}$
$>\sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$
The following shows some applications:
$>p(A, b, C, D) \sigma_{1}=p(A, b, C, e)$
$p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e)$
$p(A, b, C, D) \sigma_{2}=p(X, b, Z, e)$
$p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e)$
$p(A, b, C, D) \sigma_{3}=p(V, b, W, e)$
$p(X, Y, Z, e) \sigma_{3}=p(V, b, W, e)$

Unifiers

$>$ Substitution σ is a unifier of e_{1} and e_{2} if $e_{1} \sigma=e_{2} \sigma$.
$>$ Substitution σ is a most general unifier (mgu) of e_{1} and e_{2} if
$>\sigma$ is a unifier of e_{1} and e_{2}; and
∇ if substitution σ^{\prime} also unifies e_{1} and e_{2}, then $e \sigma^{\prime}$ is an instance of $e \sigma$ for all atoms e.
$>$ If two atoms have a unifier, they have a most general unifier.

Unification Example

$p(A, b, C, D)$ and $p(X, Y, Z, e)$ have as unifiers:
$>\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
$>\sigma_{2}=\{A / X, Y / b, C / Z, D / e\}$
$>\sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$
$>\sigma_{4}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\}$
$>\sigma_{5}=\{X / A, Y / b, Z / A, C / A, D / e\}$
$>\sigma_{6}=\{X / A, Y / b, Z / C, D / e, W / a\}$
The first three are most general unifiers.
The following substitutions are not unifiers:

$$
\begin{aligned}
\sigma_{7} & =\{Y / b, D / e\} \\
\sigma_{8} & =\{X / a, Y / b, Z / c, D / e\}
\end{aligned}
$$

Bottom-up procedure

Y You can carry out the bottom-up procedure on the ground instances of the clauses.
> Soundness is a direct corollary of the ground soundness.
$>$ For completeness, we build a canonical minimal model. We need a denotation for constants:

Herbrand interpretation: The domain is the set of constants (we invent one if the KB or query doesn't contain one). Each constant denotes itself.

Definite Resolution with Variables

A generalized answer clause is of the form

$$
\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

where t_{1}, \ldots, t_{k} are terms and a_{1}, \ldots, a_{m} are atoms.
The SLD resolution of this generalized answer clause on a_{i} with the clause

$$
a \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

where a_{i} and a have most general unifier θ, is

$$
\begin{aligned}
& \left(y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow\right. \\
& \left.\quad a_{1} \wedge \ldots \wedge a_{i-1} \wedge b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta .
\end{aligned}
$$

To solve query ?B with variables V_{1}, \ldots, V_{k} :

Set $a c$ to generalized answer clause yes $\left(V_{1}, \ldots, V_{k}\right) \leftarrow B$; While $a c$ is not an answer do

Suppose $a c$ is $\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}$
Select atom a_{i} in the body of $a c$;
Choose clause $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$ in $K B$;
Rename all variables in $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$;
Let θ be the most general unifier of a_{i} and a.
Fail if they don't unify;
Set $a c$ to $\left(y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge \ldots \wedge a_{i-1} \wedge\right.$

$$
\left.b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta
$$

end while.

Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live (Z). live $($ outside $)$ connected_to $\left(w_{6}, w_{5}\right)$. connected_to $\left(w_{5}\right.$, outside $)$. ?live (A).
$\operatorname{yes}(A) \leftarrow \operatorname{live}(A)$.
yes $(A) \leftarrow$ connected_to $\left(A, Z_{1}\right) \wedge$ live $\left(Z_{1}\right)$.
$\operatorname{yes}\left(w_{6}\right) \leftarrow \operatorname{live}\left(w_{5}\right)$.
yes $\left(w_{6}\right) \leftarrow$ connected_to $\left(w_{5}, Z_{2}\right) \wedge$ live $\left(Z_{2}\right)$.
yes $\left(w_{6}\right) \leftarrow$ live $($ outside $)$.
$y e s\left(w_{6}\right) \leftarrow$.

Function Symbols

Often we want to refer to individuals in terms of components.
Examples: 4:55 p.m. English sentences. A classlist. We extend the notion of term. So that a term can be $f\left(t_{1}, \ldots, t_{n}\right)$ where f is a function symbol and the t_{i} are terms.

In an interpretation and with a variable assignment, term $f\left(t_{1}, \ldots, t_{n}\right)$ denotes an individual in the domain. With one function symbol and one constant we can refer to infinitely many individuals.

Lists

A list is an ordered sequence of elements.
Let's use the constant nil to denote the empty list, and the function $\operatorname{cons}(H, T)$ to denote the list with first element H and rest-of-list T. These are not built-in.

The list containing david, alan and randy is cons(david, cons(alan, cons(randy, nil)))
append (X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y
append (nil, Z, Z).
$\operatorname{append}(\operatorname{cons}(A, X), Y, \operatorname{cons}(A, Z)) \leftarrow \operatorname{append}(X, Y, Z)$

