Learning Under Uncertainty

» We want to learn models from data.
P(data|model) x P(model)

P(data).
» The likelihood, P(data|model), is the probability that

this model would have produced this data.

P(model|data) =

» The prior, P(model), encodes the learning bias
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Bayesian Leaning of Probabilities

» Suppose there are two outcomes A and —A. We would
like to learn the probability of A given some data.

» We can treat the probability of A as a real-valued random
variable on the interval [0, 1], called probA.

P(data|probA=p) x P(probA=p)

P(probA=p|data) = P(data)

» Suppose the data is a sequence of n A’s out of
independent m trials,

P(data|probA=p) :p” x (1 _p)m—n
» Uniform prior: P(probA=p) = 1 for all p € [0, 1].

& Qo
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Posterior Probabilities for Different Data
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MAP model

» The maximum a posteriori probability (MAP) model is
the model that maximizes P(model|data). That i1s, it

maximizes:

P(data|model) x P(model)
» Thus it minimizes:
(— log P(data|model)) + (— log P(model))

which 1s the number of bits to send the data given the

model plus the number of bits to send the model.

& G
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Information theory overview

» A bit is a binary digit.

» 1 bit can distinguish 2 items

» [ bits can distinguish 2 items

» nitems can be distinguished using log, n bits

» Can you do better?

& G
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Information and Probability

Let’s design a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a) = E,P(b) = Z,P(c) = §’P(d) — g

Consider the code:

a 0 b 10 c 110 d 111

This code sometimes uses 1 bit and sometimes uses 3 bits.
On average, it uses

P(a) x 1 + P(b) x 2+ P(c) x 3+ P(d) x 3
1—|—2—|—3—|—3 13b't

= — 4+ -+ -+ — =1- bits.
2 4 8 8 4

The string aacabbda has code 00110010101110.

& G
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Information Content
» To identify x, you need — log, P(x) bits.

» If you have a distribution over a set and want to a identify
a member, you need the expected number of bits:

Z —P(x) x log, P(x).

X
This 1s the information content or entropy of the
distribution.

» The expected number of bits it takes to describe a
distribution given evidence e:

I(e) =) —P(xle) x log, P(xle).

& G
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Information Gain

If you have a test that can distinguish the cases where o 1s
true from the cases where « 1s false, the information gain

from this test 1s:
[(true) — (P(a) X [(ax) + P(—a) X I(—a)).

» [(true) is the expected number of bits needed before the

test

» P(a) x I(a) + P(—a) x I(—«) is the expected number
of bits after the test.

& G
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Averaging Over Models

» Idea: Rather than choosing the most likely model,
average over all models, weighted by their posterior

probabilities given the data.

» If you have observed n A’s out of m trials

> the most likely value (MAP) is %

n+1
m-+2

> the expected value is

& Qo
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Learning a Belief Network

» If you
> know the structure
> have observed all of the variables

> have no missing data

» you can learn each conditional probability separately.

& Qo


http://www.cs.ubc.ca/spider/poole/ci.html

Learning belief network example

Probabilities

P(A)
P(B)
P(E|A, B)
P(CIE)
P(D|E)

& G
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Learning conditional probabilities

» Each conditional probability distribution can be learned

separately:

» For example:
P(E=tA=tAB=Yf)
(#examples: E =t ANA=tAB=f)+n
(#examples: A=t AB=f)+m
where n and m reflect our prior knowledge.

» There is a problem when there are many parents to a node
as then there 1is little data for each probability estimate.

i
=1
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Probabilities From Experts

» Bayes rule lets us combine expert knowledge with data
P(datalmodel) x P(model)
P(data).

P(model|data) =

» The experts prior knowledge of the model (i.e.,
P(model)) can be expressed as a pair (n, m) that can be
interpreted as though they had observed n A’s out of m
trials.

» This estimate can be combined with data.

» Estimates from multiple experts can be combined
together.

& G
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Unobserved Variables

O

» What if we had only observed
values for A, B, C?

A B C

& G
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Augmented Data
A B C H

EM Algorithm

Probabilities
E-step
o T~ P(A)
P(H|A)

. ¢ P(B|H)
M-step P(C|H)

& G
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EM Algorithm

» Repeat the following two steps:

> E-step give the expected number of data points for
the unobserved variables based on the given

probabilty distribution.

> M-step infer the (maximun likelihood) probabilities
from the data. This i1s the same as the full observable

case.
» Start either with made-up data or made-up probabilities.

» EM will converge to a local maxima.

& G
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O

Example Data

A B C | Count
t t t 143
t t f 329
t f t 57
t  f 271
f t t 87
f t f 66
f f t 23
f f f 24

& G
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Naive Bayesian Classifier

& G
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Unsupervised Learning

» Given a collection of data, find natural classifications.

» This can be seen as the naive Bayesian classifier with the
classification unobserved.

» EM can be used to learn classification.

& G
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Bayesian learning of decision trees

P(data|model) x P(model)

P(model|data) = P(daa)
ata).

» A model here is a decision tree

» We allow for decision trees with probabilities at the

leaves
» A bigger decision tree can always fit the data better

» P(model) lets us encode a preference for smaller

decision trees.

& G
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Data for decision tree learning

atty attr, class count

t t cl 5
t t c2 7
t f cl 10
t f c2 13
f t cl 5
f t c2 13
f f cl 10
f f c2 2
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