Neural Networks

- These representations are inspired by neurons and their connections in the brain.
- Artificial neurons, or units, have inputs, and an output. The output can be connected to the inputs of other units.
- The output of a unit is a parameterized non-linear function of its inputs.
- > Learning occurs by adjusting parameters to fit data.

Neural networks can represent an approximation to any function.

Why Neural Networks?

- As part of neuroscience, in order to understand real neural systems, researchers are simulating the neural systems of simple animals such as worms.
- It seems reasonable to try to build the functionality of the brain via the mechanism of the brain (suitably abstracted).
- > The brain inspires new ways to think about computation.
- Neural networks provide a different measure of simplicity as a learning bias.

Feed-forward neural networks

- Feed-forward neural networks are the most common models.
- These are directed acyclic graphs:

A unit with *k* inputs is like the parameterized logic program:

 $prop(Obj, output, V) \leftarrow$ $prop(Obj, in_1, I_1) \land$ $prop(Obj, in_2, I_2) \land$

 $prop(Obj, in_k, I_k) \land$ V is $f(w_0 + w_1 \times I_1 + w_2 \times I_2 + \dots + w_k \times I_k).$

 \blacktriangleright I_j are real-valued inputs.

 \blacktriangleright w_j are adjustable real parameters.

 \succ f is an activation function.

A typical activation function is the sigmoid function:

Neural Network for the news example

Axiomatizing the Network

- > The values of the attributes are real numbers.
- > Thirteen parameters w_0, \ldots, w_{12} are real numbers.
- The attributes h_1 and h_2 correspond to the values of hidden units.
- There are 13 real numbers to be learned. The hypothesis space is thus a 13-dimensional real space.
- Each point in this 13-dimensional space corresponds to a particular logic program that predicts a value for *reads* given *known*, *new*, *short*, and *home*.

predicted_prop(Obj, reads, V) \leftarrow $prop(Obj, h_1, I_1) \land prop(Obj, h_2, I_2) \land$ V is $f(w_0 + w_1 \times I_1 + w_2 \times I_2)$. $prop(Obj, h_1, V) \leftarrow$ $prop(Obj, known, I_1) \land prop(Obj, new, I_2) \land$ $prop(Obj, short, I_3) \land prop(Obj, home, I_4) \land$ V is $f(w_3 + w_4 \times I_1 + w_5 \times I_2 + w_6 \times I_3 + w_7 \times I_4)$. $prop(Obj, h_2, V) \leftarrow$ $prop(Obj, known, I_1) \land prop(Obj, new, I_2) \land$

 $prop(Obj, short, I_3) \land prop(Obj, home, I_4) \land$

 $V \text{ is } f(w_8 + w_9 \times I_1 + w_{10} \times I_2 + w_{11} \times I_3 + w_{12} \times I_4)$

Prediction Error

For particular values for the parameters $\overline{w} = w_0, \dots, w_m$ and a set *E* of examples, the sum-of-squares error is

$$Error_E(\overline{w}) = \sum_{e \in E} (p_e^{\overline{w}} - o_e)^2,$$

- > $p_e^{\overline{w}}$ is the predicted output by a neural network with parameter values given by \overline{w} for example *e*
- \succ o_e is the observed output for example *e*.
- The aim of neural network learning is, given a set of examples, to find parameter settings that minimize the error.

Neural Network Learning

- Aim of neural network learning: given a set of examples, find parameter settings that minimize the error.
 - Back-propagation learning is gradient descent search through the parameter space to minimize the sum-of-squares error.

Backpropagation Learning

Inputs:

- > A network, including all units and their connections
- > Stopping Criteria
- Learning Rate (constant of proportionality of gradient descent search)
- \succ Initial values for the parameters
- > A set of classified training data

• Output: Updated values for the parameters

Backpropagation Learning Algorithm

- valuate the network on each example given the current parameter settings
- determine the derivative of the error for each parameter
- \succ change each parameter in proportion to its derivative
- > until the stopping criteria is met

Gradient Descent for Neural Net Learning

 \blacktriangleright At each iteration, update parameter w_i

$$w_i \leftarrow \left(w_i - \eta \frac{\partial error(w_i)}{\partial w_i}\right)$$

 η is the learning rate

> You can compute partial derivative:

> numerically: for small
$$\Delta$$

$$\frac{error(w_i + \Delta) - error(w_i)}{\Delta}$$
> analytically: $f'(x) = f(x)(1 - f(x)) + \text{chain rule}$

Simulation of Neural Net Learning

Para-	iteration 0		iteration 1	iteration 80
meter	Value	Deriv	Value	Value
WO	0.2	0.768	-0.18	-2.98
w ₁	0.12	0.373	-0.07	6.88
W ₂	0.112	0.425	-0.10	-2.10
W3	0.22	0.0262	0.21	-5.25
W4	0.23	0.0179	0.22	1.98
Error:	4.6121		4.6128	0.178

What Can a Neural Network Represent?

Output is $f(w_0 + w_1 \times I_1 + w_2 \times I_2)$.

A single unit can't represent xor.

Bias in neural networks and decision trees

► It's easy for a neural network to represent "at least two of I_1, \ldots, I_k are true":

 $w_0 \quad w_1 \quad \cdots \quad w_k$ -15 10 \cdots 10

This concept forms a large decision tree.

- > Consider representing a conditional: "If c then a else b":
 - \succ Simple in a decision tree.
 - Needs a complicated neural network to represent $(c \land a) \lor (\neg c \land b).$

Neural Networks and Logic

- Meaning is attached to the input and output units.
- There is no a priori meaning associated with the hidden units.
- What the hidden units actually represent is something that's learned.

