

- Actions result in outcomes
- > Agents have preferences over outcomes
- A rational agent will do the action that has the best outcome for them
- Sometimes agents don't know the outcomes of the actions, but they still need to compare actions
- Agents have to act (doing nothing is (often) an action).

Preferences Over Outcomes

If o_1 and o_2 are outcomes

▶ $o_1 \succeq o_2$ means o_1 is at least as desirable as o_2 .

 \triangleright $o_1 \sim o_2$ means $o_1 \succeq o_2$ and $o_2 \succeq o_1$.

 \triangleright $o_1 \succ o_2$ means $o_1 \succeq o_2$ and $o_2 \not\succeq o_1$

An agent may not know the outcomes of their actions, but only have a probability distribution of the outcomes.

A lottery is a probability distribution over outcomes. It is written

$$[p_1:o_1, p_2:o_2, \ldots, p_k:o_k]$$

where the o_i are outcomes and $p_i > 0$ such that

$$\sum_{i} p_i = 1$$

The lottery specifies that outcome o_i occurs with probability p_i .

When we talk about outcomes, we will include lotteries.

Properties of Preferences

Agents have to act, so they must have preferences: $\forall o_1 \forall o_2 \ o_1 \succeq o_2 \text{ or } o_2 \succeq o_1$

Preferences must be transitive:

if $o_1 \succeq o_2$ and $o_2 \succeq o_3$ then $o_1 \succeq o_3$

otherwise $o_1 \succeq o_2$ and $o_2 \succeq o_3$ and $o_3 \succ o_1$. If they are prepared to pay to get from o_1 to $o_3 \longrightarrow$ money pump.

Properties of Preferences (cont.)

Monotonicity. An agent prefers a larger chance of getting a better outcome than a smaller chance:

► If
$$o_1 \succ o_2$$
 and $p > q$ then
 $[p:o_1, 1-p:o_2] \succ [q:o_1, 1-q:o_2]$

Consequence of axioms

- Suppose $o_1 \succ o_2$ and $o_2 \succ o_3$. Consider whether the agent would prefer
 - *▶ o*₂ *▶* the lottery [*p* : *o*₁, 1 − *p* : *o*₃]
 - for different values of $p \in [0, 1]$.
- > You can plot which one is preferred as a function of p:

27 Tell

Properties of Preferences (cont.)

Continuity Suppose $o_1 \succ o_2$ and $o_2 \succ o_3$, then there exists a $p \in [0, 1]$ such that

$$o_2 \sim [p:o_1, 1-p:o_3]$$

Properties of Preferences (cont.)

Decomposability (no fun in gambling). An agent is indifferent between lotteries that have same probabilities and outcomes. This includes lotteries over lotteries. For example:

$$p: o_1, 1-p: [q: o_2, 1-q: o_3]]$$

~ $[p: o_1, (1-p)q: o_2, (1-p)(1-q): o_3]$

Substitutivity if $o_1 \sim o_2$ then the agent is indifferent between lotteries that only differ by o_1 and o_2 :

$$[p:o_1, 1-p:o_3] \sim [p:o_2, 1-p:o_3]$$

We would like a measure of preference that can be combined with probabilities. So that

> $value([p:o_1, 1 - p:o_2])$ = $p \times value(o_1) + (1 - p)value(o_2)$

Money does not act like this.

What you you prefer

\$1,000,000 or [0.5 : \$0,0.5 : \$2,000,000]?

It may seem that preferences are too complex and muti-faceted to be represented by single numbers.

If preferences follows the preceding properties, then preferences can be measured by a function

utility : *outcomes* \rightarrow [0, 1]

such that

▶
$$o_1 \succeq o_2$$
 if and only if *utility*(o_1) ≥ *utility*(o_2).

> Utilities are linear with probabilities:

$$utility([p_1:o_1, p_2:o_2, \dots, p_k:o_k]) = \sum_{i=1}^k p_i \times utility(o_i)$$

- ▶ if all outcomes are equally preferred, set $utility(o_i) = 0$ for all outcomes o_i .
- Otherwise, suppose the best outcome is *best* and the worst outcome is *worse*.
- For any outcome o_i , define $utility(o_i)$ to be the number u_i such that

$$o_i \sim [u_i : best, 1 - u_i : worst]$$

This exists by the Continuity property.

Suppose $o_1 \succeq o_2$ and $utility(o_i) = u_i$, then by Substitutivity,

$$[u_1 : best, 1 - u_1 : worst]$$

$$\succeq [u_2 : best, 1 - u_2 : worst]$$

Which, by monotonicity implies $u_1 \ge u_2$.

- Suppose $p = utility([p_1 : o_1, p_2 : o_2, ..., p_k : o_k]).$
- Suppose $utility(o_i) = u_i$. We know:

 $o_i \sim [u_i : best, 1 - u_i : worst]$

By substitutivity, we can replace each o_i by $[u_i : best, 1 - u_i : worst]$, so

 $p = utility([p_1 : [u_1 : best, 1 - u_1 : worst])$

 $p_k : [u_k : best, 1 - u_k : worst]])$

> By decomposability, this is equivalent to:

$$p = utility([p_1u_1 + ... + p_ku_k \\ : best, \\ p_1(1 - u_1) + ... + p_k(1 - u_k) \\ : worst]])$$

Thus, by definition of utility,

 $p = p_1 \times u_1 + \ldots + p_k \times u_k$

Possible utility as a function of money

Someone who really wants a toy worth \$50, but who would also like one worth \$30:

