Understanding independence: example

Understanding independence: questions

- > On which given probabilities does P(N) depend?
- > If you were to observe a value for B, which variables' probabilities will change?
- If you were to observe a value for *N*, which variables' probabilities will change?
- Suppose you had observed a value for *M*; if you were to then observe a value for *N*, which variables' probabilities will change?
- Suppose you had observed *B* and *Q*; which variables' probabilities will change when you observe *N*?

What variables are affected by observing?

- > If you observe variable \overline{Y} , the variables whose posterior probability is different from their prior are:
 - > The ancestors of \overline{Y} and
 - \succ their descendants.
 - Intuitively (if you have a causal belief network):
 - \succ You do abduction to possible causes and
 - \succ prediction from the causes.

Common descendants

tampering and *fire* are independent

tampering and *fire* are dependent given *alarm*

Intuitively, tampering can explain away fire

> () T

Common ancestors

alarm and *report* are dependent

alarm and *report* are independent given *leaving*

alarm

leaving

report

• Intuitively, the only way that the *alarm* affects *report* is by affecting *leaving*.

d-separation

- $\blacktriangleright \overline{X}$ is d-separated from \overline{Y} given \overline{Z} if there is no path from an element of \overline{X} to an element of \overline{Y} , where:
 - ➤ If there are paths $A \to B$ and $B \to C$ such that $B \notin \overline{Z}$, there is a path $A \to C$.
 - ➤ If there are paths $B \to A$ and $B \to C$ such that $B \notin \overline{Z}$, there is a path $A \to C$.
 - ➤ If there are paths $A \to B$ and $C \to B$ such that $B \in \overline{Z}$, there is a path $A \to C$.
- $\overrightarrow{X} \text{ is independent } \overline{Y} \text{ given } \overline{Z} \text{ for some conditional}$ probabilities iff \overline{X} is d-separated from \overline{Y} given \overline{Z}