
7 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

developers using Eclipse, providing a glimpse
into their work habits.

The usage data
Ninety-nine software developers agreed to

participate in our user study of Mylar, an
Eclipse plug-in we’re developing (see www.
eclipse.org/mylar). These developers represent
early adopters willing to run on the most re-
cent releases of Eclipse and take advantage of
its extensibility. Table 1 presents the develop-
ers’ job functions and industry sectors. The
developers were using Eclipse 3.1 and mile-
stone releases of Eclipse 3.2, specifically M1
and M2. Of these 99 developers, 74 submitted
usage data.

In analyzing the usage data, which we col-
lected in the latter half of 2005, we focused
on JDT use, not on Mylar. The data consists
of traces of each developer’s interactions

with Eclipse recorded by our Mylar Monitor
plug-in (see the related sidebar). Each trace,
called an interaction history, includes infor-
mation about the user’s view and editor se-
lections, the commands invoked, and changes
made to the preferences and perspectives (a
perspective is a package of various views).
The information for each event includes the
time invoked, the kind of event, the plug-in
of which it was a part, and a string handle of
the targeted event (which was obfuscated
when the data was reported to ensure confi-
dentiality of the systems on which the devel-
opers worked).

Periodically, Mylar would prompt the de-
veloper to upload his or her interaction his-
tory in XML. Figure 1 shows a sample selec-
tion and command captured in an interaction
history. The selection event reflects a devel-
oper selecting a part of a package in the Pack-

feature
How Are Java Software
Developers Using
the Eclipse IDE?

M
any software developers spend their workday in an integrated
development environment. For many Java developers, Eclipse
is the IDE of choice.1,2 Commonly cited reasons for using
Eclipse include rich Java Development Tools (JDT) support

and a plug-in architecture that allows tight integration of third-party func-
tionality. But are developers using these features and plug-ins? To help answer
these questions, we report on usage data collected from 41 Java software

tools

Gail C. Murphy, Mik Kersten, and Leah Findlater, University of British Columbia

The Eclipse
integrated
development
environment
continues to gain
popularity among
Java developers,
but are they taking
full advantage of its
features and third-
party plug-ins?

age Explorer view. The subsequent command
is a save of an XML file.

We processed the 74 data sets to find de-
velopers who had performed at least 5,000 se-
lections and edits in views and editors associ-
ated with Eclipse’s JDT—a number we felt
represented significant JDT use. We report
here on the 41 developers who met this crite-
rion. On average, the interaction histories we
analyzed contained 65,492 events per devel-
oper, with a minimum of more than 11,000
events and a maximum of more than 200,000
events (standard deviation ± 50,391 events).
These interaction histories suggest that devel-
opers, on average, actively used Eclipse for 66
hours, with a minimum of 10 hours and a
maximum of 172 hours (standard deviation ±
44 hours). We collected the histories over pe-
riods ranging from six to 125 days.

We didn’t constrain the configurations of
the developers’ Eclipse environments beyond
requiring installation of the Mylar Monitor.
Developers could (but didn’t have to) use the
Mylar task management and user-interface
functionality and other third-party plug-ins
when collecting interaction histories.

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 7 7

Table 1
Background of the developers

who took part in the study
Job Percentage

Application developer 65

Academic 13

Application architect 12

Manager/CIO/CTO 4

Other 6
Organization size

One individual 19

Fewer than 50 employees 32

50 to 500 employees 26

More than 500 employees 23
Sector

Software manufacturing 48

Academic 19

Financial/retail 13

Communications/networking 7

Government 5

Other 8

Figure 1. A stylized fragment of an interaction history for Eclipse,
showing a selection and a command.

Interaction Event
Kind: selection
Date: 2005-05-12 17:02:02.781 PST
OriginId: org.eclipse.jdt.ui.PackageExplorer
Structure Kind: java
Structure Handle: project/src/com.foo.bar/Foo.java

Interaction Event
Kind: command
Date: 2005-05-12 17:02:03.411 PST
OriginId: org.eclipse.ui.file.refresh
Structure Kind: xml
Structure Handle: com.foo.bar/build.xml

Mylar is an open source technology project hosted at www.eclipse.org/
mylar. The Mylar Monitor is a standalone framework that collects and re-
ports on trace information about a user’s activity in Eclipse. The Mylar Mon-
itor captures events such as preference changes, perspective changes, win-
dow events, selections, periods of inactivity, commands invoked through
menus or key bindings, and URLs viewed through the embedded Eclipse
browser. These events are logged to a local file and uploaded by the devel-
oper to an HTTP server. The uploading mechanism manages user IDs, pro-
vides anonymity if requested, and obfuscates the handles of targets of selec-
tions and other such user data that might be collected. This ensures that
sensitive information about the source code and user isn’t transmitted. Plug-
ins can extend the Monitor for different kinds of user studies. The Monitor’s
functionality is a superset of the functionality that was available in the Eclipse
Instrumentation Framework (http://dev.eclipse.org/viewcvs/index.cgi/
platform-ui-home/instrumentation/index.html?rev=1.12). The key difference
between the two is that the Mylar Monitor captures a full log of interaction
events instead of collecting usage statistics. This allows for flexibility in ana-
lyzing usage data after it has been collected. For example, common interac-
tion sequences and usage patterns can be determined from the Mylar Moni-
tor’s interaction event log.

A common concern about collecting trace information is the volume of
information programmers can produce. We manage the size of the traces
the Mylar Monitor produces through compression, using a zipped format
that significantly reduces the file size. We found that the repetitiveness of
user activity typically yields compression ratios over 95 percent, with a
month of typical full-time programming activity resulting in an approxi-
mately 1 Mbyte trace file after compression.

To help us analyze the traces we collect, we also provide a Monitor Re-
ports plug-in with facilities for collecting and summarizing data across one
or more interaction event logs. We used this reporting framework to per-
form most of the processing reported in the main article.

The Mylar Monitor

7 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Use of views, editors, and
perspectives

Figure 2 shows the Eclipse development en-
vironment, which lets users display and ma-
nipulate information in views. The Package
Explorer view (see window A), for instance,
displays information about the Java code’s
package, class, and member structure. The
user can select information displayed in this
view—such as a class—and perform a refac-
toring, such as renaming the class.

Window B in figure 2 shows a Java editor.
In contrast to views in which an invoked com-
mand immediately affects the information, the
developer must explicitly save changes in the
editor. On average, 51 percent (± 8 percent,
over a range of 28–71 percent) of the events in
our developers’ interaction histories origi-
nated in an editor—and not just a Java editor.
We saw evidence of editors for more than 15
artifact types, including Ant, Antlr, AspectJ,
Bugzilla, C, C#, JavaServer Pages, Perl, PhP,
Python, Ruby, SQL, Tex, UML class diagrams,
and XML.

Figure 3 shows the top 10 of the 42 views
shipped with the default Eclipse distribution
(we excluded views that weren’t default
views), based on the percentage of developers

who made at least one selection in each of the
views. The 10 views help display

■ the code’s static structure (Package Ex-
plorer and Outline),

■ runtime and debug information (Console,
Variables, Debug, and Breakpoints),

■ search results (Search),
■ the compiler and other tools’ output

(Problems), and
■ general file navigation and command

progress (Resource Navigator and Progress).

At least 93 percent of the developers used the
first seven views.

Eclipse also supports different perspectives.
Figure 2 shows, for instance, the default Java
perspective with the Package Explorer, editor
window, Problems view (for compiler com-
plaints), and Outline view (for displaying the
current edited file’s structure). As another ex-
ample, the Debug perspective makes it easy to
switch to a set of views that facilitates debug-
ging, such as a Breakpoint view, a dynamic call
stack, an editor, and a Console view. The stan-
dard Eclipse JDT installation provides eight de-
fault perspectives, and users can also configure
their own perspectives. Figure 4 shows the per-

Figure 2. The default
Java perspective in
Eclipse: Window A is
the Package Explorer
view, window B is a
Java editor, window C is
the Outline view, and
window D is the
Problems view.

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 7 9

spectives that 25 percent of the developers used
at least once. The only default perspectives that
none of the developers used were the Java Type
Hierarchy and Java Browsing perspectives.

Frequently used commands
Across all the users, we collected data for

more than 1,100 different identifiers for com-
mands. Developers invoked a large percentage of
the executed commands (84 percent) using key
bindings; they invoked the remaining commands
from toolbars (8 percent) and menus (5 percent),
while a small number of invocation sources
weren’t recorded by the monitor (3 percent).

Not surprisingly, the developers used edit-
ing commands the most. Tables 2 and 3 pro-

Eclipse perspectives

Java Debug Team
synchronizing

CVS repository
exploring

Plug-in
 development

Resource

De
ve

lo
pe

r u
se

 (%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 4. The
perspectives (packages
of views and editors)
that at least 25 percent
of the study’s
developers used.

Eclipse views

De
ve

lo
pe

r u
se

 (%
)

0

10

20

30

40

50

60

70

80

90

100

Pac
ka

ge

Ex
plo

rer
Con

so
le

Sea
rch

Prob
lem

s

Vari
ab

les
Deb

ug

Outl
ine

Res
ou

rce

Nav
iga

tor

Brea
kp

oin
ts

Prog
res

s

Figure 3. The top 10 of
42 views shipped with
the standard Eclipse
distribution, based on
the percentage of the 41
developers who made at
least one selection in
each view.

Table 2
Top 10 commands executed by the most developers
Command Identifier No. of users

Delete org.eclipse.ui.edit.delete 41

Save org.eclipse.ui.file.save 41

Paste org.eclipse.ui.edit.paste 41

Content assist org.eclipse.ui.edit.text.contentAssist.proposals 41

Copy org.eclipse.ui.edit.copy 41

Undo org.eclipse.ui.edit.undo 41

Cut org.eclipse.ui.edit.cut 40

Refresh org.eclipse.ui.file.refresh 40

Show view org.eclipse.ui.window.showViewsShortlist 40

8 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

vide two views of the top 10 commands. Table
2 lists the commands by the number of devel-
opers using the command. Table 3 lists the
commands according to average use by all de-
velopers. Interestingly, developers used content
assist (which suggests possible method names
in the editor given a type) as much as the com-
mon editing commands.

Analyzing the command information in the
interaction histories was difficult. For Eclipse
and the plug-ins that extend it, the intent for
the plug-in developer is to assign a unique
identifier for a command regardless of how
the command is made available in the envi-
ronment. For instance, the same command
provided through a toolbar menu and a con-
text menu in the editor should have the same
identifier. Unfortunately, not all Eclipse plug-

ins use this convention. As a result, we found
many inconsistencies, resulting in different
identifiers representing the same command.
For example, selecting Save from the File
menu in the toolbar generates a different iden-
tifier than when a key binding performs the
Save command. We also found cases that used
the same identifier for commands provided by
different plug-ins.

To account for these duplications and ambi-
guities, we created a mapping of identifiers
that considers the context of how a command
was used. This mapping reduced the number of
unique identifiers from 1,208 to 1,142. How-
ever, our mapping focused on the more com-
monly used commands, so this number might
still include duplicated and ambiguous com-
mands. To facilitate this sort of analysis, we
recommend that plug-in developers specify
consistent IDs for their commands and actions.

Navigation
Most software fixes, changes, and enhance-

ments involve navigating across the code base
to understand the system’s structure and the
context in which code executes. Eclipse pro-
vides seven views to help a developer efficiently
locate code of interest: Package Explorer, Type
Hierarchy, Outline, Search, Call Hierarchy,
Bookmarks, and Declaration. The developers
in our study used the Package Explorer view
the most, on the basis of the number of selec-
tions made in each view (see figure 5); nobody
used the Declaration view, even though it is
present by default in the Java perspective.

Through key bindings, Eclipse also provides
direct, easily accessed support for different
kinds of nonlocal navigation and searches, in-
cluding navigating to the declaration of an ele-
ment selected in the editor, searching for refer-
ences to a selected element, and opening a type.
Table 4 summarizes these nonlocal navigation
and search commands available in the JDT,
their key bindings on the Windows platform,
how many of the developers used the com-
mands, and each command’s rank (a rank of
one indicates the command that the developers
used most; the lowest rank is 1,142—the num-
ber of commands). This data shows that the
command used most often is opening a selected
element’s declaration (a rank of 21); the com-
mand used by the largest number of users is the
search for references in a workspace.

To help developers mark points of interest

Package Explorer
Search
Type Hierarchy
Outline
Call Hierarchy

74%

11%

2%

10%
3%

Figure 5. Use of
navigation views by all
41 developers (nobody
used the Declaration
view).

Table 3
Top 10 commands executed across all 41 developers

Command Identifier Use (%)

Delete org.eclipse.ui.edit.delete 14.3

Save org.eclipse.ui.file.save 11.3

Next word org.eclipse.ui.edit.text.goto.wordNext 7.3

Paste org.eclipse.ui.edit.paste 6.8

Content assist org.eclipse.ui.edit.text.contentAssist.proposals 6.7

Previous word org.eclipse.ui.edit.text.goto.wordPrevious 5.9

Copy org.eclipse.ui.edit.copy 4.6

Select previous word org.eclipse.ui.edit.text.select.wordPrevious 3.4

Step (debug) org.eclipse.debug.ui.debugview.toolbar.stepOver 3.2

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 8 1

in files and navigate back to those points,
Eclipse provides bookmarking. When viewing
a file or a point of interest in a file, a developer
can use a pop-up menu to remember the book-
mark. A Bookmarks view helps developers ac-
cess saved bookmarks, but only five develop-
ers used it, ranking it 213th.

Refactoring
Development environments are increas-

ingly providing automated support for code
refactoring.3 By examining the commands in

the default Refactor menus, we found evi-
dence of the developers using 11 kinds of
refactoring commands. Figure 6 shows the
percentage of users invoking each of these
commands.

Developers can invoke each refactoring in
different ways, through key bindings, from a
context menu in the editor or in a view, or
through a pull-down menu. Figure 7 shows
how each of the refactoring commands per-
formed by more than 25 percent of the users
was invoked. The most common way was

Refactoring commands

Rename Move Extract Pull Up Inline Convert
Local

Variable

Change
Method

Signature

Introduce
Parameters

Introduce
Factory

Infer Types
of

Arguments

Push
Down

De
ve

lo
pe

r u
se

 (%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 6. The
percentage of
developers using
11 categories of
refactoring commands.

Table 4
Navigation and search command usage in the Java Development Tools

Command Key binding No. of users Rank

Search for references to selected element in workspace Ctrl+Shift+G 33 50

Navigate to a type Ctrl+Shift+T 28 29

Open a type in the hierarchy view F4 27 119

Open declaration of selected element F3 26 21

Navigate to last edit location Ctrl+Q 20 128

Navigate back among open editors Alt+Left 19 28

Search for declarations of selected element in workspace Ctrl+G 17 245

Navigate forward among open editors Alt+Right 14 51

Search for references in a project n/a 16 96

through key bindings, which represented 57
percent of the total refactoring invocations. The
one exception in figure 7 is Pull Up, which
moves methods and fields up the class hierar-
chy. Because this refactoring command changes
the structure of more than one class, it’s not
surprising developers invoked it more often
through menu selections, because it requires
more thought about the program’s structure.

Debugging views
All but three developers used some of the

six debugging views (see figure 8). Almost all
of them (over 90 percent) used

■ the Variables view, which supports the in-
spection of variable values, and

■ the Debug view, which displays informa-
tion about the running threads and stacks
and provides execution control.

Over 70 percent used the Breakpoints view.
Less-used views were the Expressions view,
which shows a tree of expressions and their val-
ues; the Display view, which helps users evalu-
ate Java code snippets; and, not surprisingly,
the Registers view, which helps debug C code.

Source repository use
The developers used three different kinds of

source repositories. Most (23 of the 41) used
repositories based on CVS (Concurrent Ver-
sions System; http://ximbiot.com/cvs/wiki). Al-
most a quarter of the developers used reposito-
ries based on Subversion (http://subversion.
tigris.org), and two used a repository based on
Microsoft’s Visual SourceSafe.

Third-party plug-ins
On the basis of the names given to events in

the 12 of 14 interaction histories, it appears
that all the developers used a third-party plug-
in. On average, 27 percent of the events in an
interaction history came from plug-ins that
aren’t deployed with the default Eclipse down-
load, the Eclipse SDK, which includes the JDT.

8 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Key binding Context menu
from editor

Context menu
from view

Other menu

Refactoring commands

Rename Move Extract Pull Up Inline

In
vo

ca
tio

n
m

et
ho

d
(%

)

0

10

20

30

40

50

60

70

80

90

100

Figure 7. How
developers invoked
the top five refactoring
commands (those
used by more than
25 percent of the
developers).

Debug views

Variables Debug Breakpoints Expressions Display Registers

De
ve

lo
pe

r u
se

 (%
)

0

10

20

30

40

50

60

70

80

90

100
Figure 8. The
percentage of the 41
developers using each
of the six debugging
views.

D espite the long history of software de-
velopment environments, we haven’t
been able to find any similar field us-

age data for one of these environments. Pub-
lished accounts have focused on the use of a
subset of features in the context of laboratory
experiments.4,5 We believe that this sort of fea-
ture-usage analysis is becoming increasingly
important, as the recent trajectory of these en-
vironments has been to provide an ever-in-
creasing amount of functionality.

Our usage monitoring approach allows
tool builders to sample how developers are us-
ing their tools in the wild. The data gathered
about tool use can be used to prevent feature
bloat and to evolve the environments accord-
ing to user needs. Information about how de-
velopers work in a development environment
can also provide a baseline for assessing new
software development tools. We hope this re-
port will provide a start in defining which in-
formation to collect and distribute on an on-
going basis to help improve Eclipse and other
similar platforms and tools.

Acknowledgments
IBM and the Natural Sciences and Engineering

Research Council of Canada funded this work. Many
thanks to Joanna McGrenere for her helpful com-
ments on an earlier draft.

References
1. C. Zetie. “Eclipse Has Won—What’s Next for Eclipse?”

Forrester Research, 2005; www.forrester.com/Research/
Document/Excerpt/0,7211,36165,00.html.

2. G. Goth, “Beware the March of This IDE: Eclipse Is
Overshadowing Other Tool Technologies,” IEEE Soft-
ware, vol. 22, no. 4, 2005, pp. 108–111.

3. M. Fowler, Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley, 1999.

4. M.P. Robillard, W. Coelho, and G.C. Murphy, “How
Effective Developers Investigate Source Code: An Ex-
ploratory Study,” IEEE Trans. Software Eng., vol. 30,
no. 12, 2004, pp. 889–903.

5. A.J. Ko, H. Aung, and B.A. Myers, “Eliciting Design
Requirements for Maintenance-Oriented IDEs: A De-
tailed Study of Corrective and Perfective Maintenance
Tasks,” Proc. 27th Int’l Conf. Software Eng. (ICSE 05),
ACM Press, 2005, pp. 126–135.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Authors

Gail C. Murphy is an associate professor in the University of British Columbia’s Depart-
ment of Computer Science. Her research interests include software evolution and information
structure. She received her PhD in computer science and engineering from the University of
Washington. She’s a member of the ACM and the IEEE Computer Society. Contact her at the
Dept. of Computer Science, Univ. of British Columbia, 201-2366 Main Mall, Vancouver BC
Canada; murphy@cs.ubc.ca.

Mik Kersten is a PhD student in the University of British Columbia’s Department of Com-
puter Science, lead of the Mylar eclipse.org project, and committer on the AspectJ and AspectJ
Development Tools projects. While working at Xerox Palo Alto Research Center, he created in-
tegrated development environment support for AspectJ. He now focuses on helping Eclipse re-
duce information overload by making explicit the context of the tasks we work on. He’s a student
member of the ACM. Contact him at the Dept. of Computer Science, Univ. of British Columbia,
201-2366 Main Mall, Vancouver BC Canada; beatmik@acm.org.

Leah Findlater is a PhD student in the University of British Columbia’s Department of
Computer Science. Her research interest is human-computer interaction, focusing on the per-
sonalization of complex user interfaces. Contact her at the Dept. of Computer Science, Univ. of
British Columbia, 201-2366 Main Mall, Vancouver BC Canada; lkf@cs.ubc.ca.

