
©2004 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

How Effective Developers Investigate
Source Code: An Exploratory Study

Martin P. Robillard, Wesley Coelho, and Gail C. Murphy, Member, IEEE Computer Society

Abstract—Prior to performing a software change task, developers must discover and understand the subset of the system relevant to

the task. Since the behavior exhibited by individual developers when investigating a software system is influenced by intuition,

experience, and skill, there is often significant variability in developer effectiveness. To understand the factors that contribute to

effective program investigation behavior, we conducted a study of five developers performing a change task on a medium-size open

source system. We isolated the factors related to effective program investigation behavior by performing a detailed qualitative analysis

of the program investigation behavior of successful and unsuccessful developers. We report on these factors as a set of detailed

observations, such as evidence of the phenomenon of inattention blindness by developers skimming source code. In general, our

results support the intuitive notion that a methodical and structured approach to program investigation is the most effective.

Index Terms—Software evolution, empirical software engineering, program investigation, program understanding.

�

1 INTRODUCTION

USEFUL software systems change [14]. As observed by
Boehm [2], modifying software generally involves

three phases: understanding the existing software, modify-
ing the existing software, and revalidating the modified
software. Thus, before performing a modification to a
software system, a developer must explore the system’s
source code to find and understand the subset relevant to
the change task [27]. Often, the code relevant to a change
task is scattered across many modules [10], increasing the
difficulty of the task.

To help developers discover and understand the parts of

a program1 that may be related to a change task, software

development environments (SDEs) provide features en-

abling users to perform lexical and structural searches on

the source code of a program [4], [12], [15], [20], [30]. As an

early example, the Interlisp-D environment provided cross-

referencing support [25]. Cross-references allow developers

to obtain information that cannot easily be gained through

code inspection. For example, a classic cross-reference

query produces all the callers of a function. Search features

such as cross-references are now commonly found in

current software development environments (e.g., the

Eclipse platform [19]).

Unfortunately, the provision of search features is not

sufficient to ensure the effective investigation of a program

by a developer. For example, the keywords to provide as

input to lexical searches, or the choice of cross-reference

queries to perform, are determined by developers based on

a mix of intuition, experience, and skill. The behavior of a

developer investigating a program is thus a highly personal

process which, combined with other factors, is responsible

for the large variability in efficiency that is often observed

between individual developers.
We were interested in isolating the factors influencing

the success of a software modification task that are strictly
associated with the behavior of a developer (rather than
external factors such as the influence of the workplace [9],
the programming environment used [8], [24], or the
expressiveness of the notation used [29]). We believe
understanding the nature of program investigation beha-
vior that is associated with successful software modification
tasks can help us improve the tool support and training
programs offered to software developers.

To investigate the links between program investigation
behavior and success at a software modification task, we
conducted a study of five developers undertaking an
identical software change task on a medium-sized system.
The main goal of our experimental design was to achieve
the highest level of realism for the task studied while still
being capable of replicating the study. For this reason, our
methodology focused on a context-rich, detailed qualitative
analysis of a few replicated cases, rather than a statistical
analysis of causality between dependent variables. By
performing a detailed qualitative analysis contrasting the
program investigation behavior of successful and unsuc-
cessful developers, we were able to isolate the factors which
we believe are associated with effectiveness during the
program modification task.

Our results are presented as a theory of program
investigation effectiveness that takes the form of a series
of observations and associated hypotheses, each supported
by detailed evidence taken from video recordings of the
actions of each software developer. Overall, we found that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004 889

. M.P. Robillard is with the School of Computer Science, McGill University,
3480 University Street, #318 Montréal QC Canada H3A 2A7.
E-mail: martin@cs.mcgill.ca.

. W. Coelho and G.C. Murphy are with the Department of Computer
Science, University of British Columbia, 201-2366 Main Mall, Vancouver
BC Canada V6T 1Z4. E-mail: {Coelho, Murphy}@cs.ubc.ca.

Manuscript received 7 June 2004; revised 11 Oct. 2004; accepted 18 Oct.
2004.
Recommended for acceptance by D. Rombach.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0109-0604.

1. We use the terms program and software system interchangeably.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

successful developers exhibited a highly methodical ap-
proach to program investigation. Specifically, they investi-
gated enough of the code to understand the high-level
structures of the system, prepared a detailed plan of the
change to be made, implemented the plan in a mostly linear
fashion, and used structurally guided searches to investi-
gate the system. In contrast, the behavior of unsuccessful
developers was clearly ad hoc and opportunistic, relying
heavily on code skimming and guessing. Surprisingly, the
methodical approach did not lead to a longer time required
to finish the task. On the contrary this approach allowed the
successful developers to complete the task in close to half of
the time allotted.

Our study has several novel features. First, it involved a
more complex task and larger system than most previous
multisubject studies of developers. Second, many of the
previous studies (e.g., [5], [6], [7], [11], [18], [34]) have relied
on analyses that were based on heavily abstracted char-
acterizations of both developer behavior and success level.
Although this strategy allowed the investigators to study a
higher number of subjects, potentially increasing confidence
in the results, it also limited the scope of the results. In
contrast, our analysis involved a detailed study of the code
examined by each developer and of the methods used by
the developers to navigate between different locations in
the code. Furthermore, our observations take into account a
detailed analysis of the actual source code modified by each
developer.

The contributions of this paper are twofold. First, we
provide a set of detailed observations about the character-
istics of effective program investigation behavior. These
observations are accompanied by hypotheses that can be
validated by additional research and practical experience.
Second, we describe a methodology and analysis technique
for studying the behavior of software developers that can be
used by researchers to further test the hypotheses proposed
in this paper and to perform other detailed investigations of
programmer behavior.

The rest of the paper is organized as follows: In Section 2,
we present the details of the modification task studied and
our methodology. In Section 3, we describe how we
performed an analysis of the data to determine the success
level of each developer and to characterize their behavior.
Section 4 is the presentation of our observations. In
Section 5, we discuss the factors influencing the validity
of our study. In Section 6, we present the related work, and
conclude in Section 7.

2 METHODOLOGY

Our goal for this research was to be able to make
hypotheses about the characteristics of the program
investigation process that are associated with success at a
software modification task. For this reason, we chose an
exploratory study format. Our research relies on two main
assumptions:

. There exists a relation between program investiga-
tion behavior and the success with which developers
can perform a software modification task.

. Personal characteristics such as the skill, experience,
and expertise of developers are reflected in their
program investigation behavior.

We argue the validity of our assumptions by showing the
absurdity of a situation in which they would not hold.
Rejecting the first assumption would imply that a developer
could investigate only irrelevant methods and still perform
a correct change. Rejecting the second assumption would
imply that the program investigation behavior of devel-
opers is either completely algorithmic or completely
random.

These assumptions allow us to focus on the character-
istics of program investigation behavior that influence
developer effectiveness without having to consider the
factors explaining the behavior. As a consequence, we
believe our results are more useful and generalizable.

To fulfill our research goal, we undertook a study of the
behavior of different developers as they performed an
identical change task. To ensure we were studying the
appropriate phenomenon, our experimental methodology
needed to meet two specific requirements: realism and
replication.

Realism. To explore the program investigation behavior
of developers, we needed to study a situation representative
of realistic program modification tasks. In practice, this
meant a change task challenging enough to require
developers to spend a significant amount of effort investi-
gating the system, and a system large enough to preclude a
“systematic” program understanding strategy [28], and
developed by multiple people over multiple evolution
cycles.2

Replication. To allow us to identify the characteristics of
program investigation behavior associated with successful
program modification tasks, we needed to be able to
contrast the behavior of successful and unsuccessful
developers. This requirement implies some form of replica-
tion. Additionally, because success at program change tasks
can be heavily influenced by the nature of the task,
programming language used, and other factors indepen-
dent of developers, we needed to be able to control the task
and the environment in which the work was performed.

These requirements are conflicting because, as we study
more realistic tasks, we face increasing problems controlling
for factors that might influence the results, and increasing
difficulty analyzing enough of the data collected to account
for the complexity of the phenomenon observed. To achieve
a balance, we chose a three-hour software modification task
on a 65kLOC3 text editor system written in Java. We
replicated the study with five different developers as this
amount of replication offered a reasonable tradeoff between
the cost of replication and detailed qualitative analysis and
the generalizability of the results [22], [35]. Since our study
was exploratory, we were interested in making observa-
tions based on a detailed, qualitative investigation of
program investigation behavior rather that testing causality
hypotheses using statistical inference.

890 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

2. In this paper, we consistently use the term “systematic” in the sense of
Soloway et al., to mean a line-by-line read of the entire source code of a
program.

3. Thousand lines of source code, excluding comments and blank lines.

In the rest of this section, we describe the details of our
experimental setting, our data collection methods, and the
coding and analysis methodology we used to process the
raw data in preparation for the detailed analysis.

2.1 The Study

Our study setup was to ask five developers to individually
perform an identical software modification task.

2.1.1 The Task

The target system for our study was the jEdit text editor
(version 4.6-pre6).4 jEdit is written in Java and consists of
64,994 noncomment, nonblank lines of source code,
distributed over 301 classes in 20 packages. Among other
features, jEdit saves open file buffers automatically. Our
study focuses on this autosave feature.

In version 4.6-pre6, any changed and unsaved (or dirty)

file buffer is saved in a special backup file at regular

intervals (e.g., every 30 seconds). This frequency can be set

by the user through an Options page brought up with a

menu command in the application’s menu bar. If jEdit

crashes with unsaved buffers, the next time it is executed, it

will attempt to recover the unsaved files from the

automatically saved backups. In the initial version of jEdit

used for our study, a user can disable the autosave feature

by specifying the autosave frequency as zero. However, this

option is undocumented, and can only be discovered by

inspecting the source code.
The task we requested of subjects consisted of the

following modification request.
Modify the application so that the users can explicitly disable

the autosave feature. The modified version should meet the
following requirements.

1. jEdit shall have a check box labeled “Enable Autosave”
above the autosave frequency field in the Loading and
Saving pane of the global options. This check box shall
control whether the autosave feature is enabled or not.

2. The state of the autosave feature should persist between
different executions of the tool.

3. When the autosave feature is disabled, all autosave backup
files for existing buffers shall be immediately deleted from
disk.

4. When the autosave feature is enabled, all dirty buffers
should be saved within the specified autosave frequency.

5. When the autosave feature is disabled, the tool should
never attempt to recover from an autosave backup, if for
some reason an autosave backup is present. In this case the
autosave backup should be left as is.

The change corresponding to this request for modifica-
tion, as initially performed by an author of this paper in
preparation for the study, amounted to about 65 lines of
modified, deleted, or added code, scattered in six files.

2.1.2 Subject Selection

Subjects for this study were recruited through a mailing
list in the Department of Computer Science at the
University of British Columbia, and through personal
contacts. Subjects were required to have a minimum level

of Java programming experience and experience with the
maintenance of software systems of at least medium size.
Student applicants with programming experience gained
through cooperative work terms and graduate research
projects were accepted for the study, since this level of
experience corresponds to that of entry-level professional
developers. No current member of our research group was
accepted for this study. Subjects were paid for their time.

2.1.3 Study Setting

The study was divided into three phases. To minimize
potential investigator bias, each phase was described
entirely through written instructions. In any phase, the
subjects could ask questions, but we established guidelines
restricting answers from the investigator to clarification of
the written material.

Eclipse Training Phase. To investigate the code and to
perform the change, subjects used the Eclipse integrated
programming environment configured for Java [19]. To
ensure that all subjects had sufficient familiarity with the
development environment, we first had the subjects
complete a tutorial on how to use the principal features of
Eclipse required for the study: code browsing and editing,
and performing searches and cross-references. This phase
was limited to 30 minutes. Subjects already familiar with
Eclipse were asked to read through the tutorial, but could
end the training period at their discretion. Before continu-
ing on to the next phase, the subjects had to pass a simple
proficiency test, in which the investigator asked them to
perform various tasks covered in the tutorial. All subjects
passed the Eclipse training test.

Program Investigation Phase. After the training phase,
the subjects were asked to read some preparatory material
about the change to perform. This material included
excerpts from the jEdit user manual describing file buffers
and the autosave feature, instructions on how to launch
jEdit and test the autosave feature, the change requirements
listed in Section 2.1.1, and a set of eight test cases covering
the basic requirements. The test cases were sequences of
operations on jEdit, described in English, that could be
performed using jEdit’s graphical user interface. The
subjects were allowed to perform these tests at any point
during the study. The written material for that phase also
included two pointers to the code, intended to simulate
expert knowledge available about the change task. These
pointers consisted of the classes Autosave and LoadSa-

veOptionPane, the classes dealing with the autosave
timer and the option pane where the autosave save
frequency was set, respectively. We felt such pointers were
a reasonable starting point since this type of information is
often found in requests for modifications and bug descrip-
tions managed by systems such as Bugzilla.5 In our case,
using such starting points enabled us to reduce the
variability of the behavior analyzed, with the benefit of
increasing the value of any contrast observed between
subjects.

The subjects were then given one hour to investigate the
code pertaining to the change in preparation to the actual
task. The subjects were to investigate the code using the

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 891

4. http://www.jedit.org. 5. http://www.bugzilla.org.

features of Eclipse covered in the training phase, but were
not instructed which features to use or how and when to
use them. The subjects were informed about the possibility
of taking notes in a text file, but were not explicitly
instructed to do so. The subjects were also allowed to
execute the jEdit program, but not to change any code, even
temporarily, nor to use the debugger. We set these
restrictions to reduce the influence of debugging skills in
Eclipse on the results. The intent of the initial investigation
phase was to introduce some control over the study, and to
prevent the case where a developer would try to perform
the change with almost no prior investigation. Although
this is possible in the case of trivial tasks, we knew from
designing the study that the possibility of succeeding at the
task without investigating the program was extremely
unlikely. We thus wanted to prevent developers from
coming to this realization halfway through the study.
Section 5.3 discusses the potential impact of this choice on
the generalizability of our results.

Program Change Phase. In this phase, subjects were
simply instructed to implement the requirements, and that
this implementation needed to pass the tests. The subjects
were given two hours to complete this phase of the study.
The instructions for this phase were purposefully left as
general as possible so as not to be leading. However, it
elicited questions to determine when the change was
“completed.” These questions were answered with the
clarification to implement the requirements as well and as
efficiently as possible and to end the study when they felt
they had done so. The subjects who completed the study
before the prescribed time independently identified the
completion point for the study. In this phase, use of the
debugger was again disallowed. At the end of the phase
(either triggered by the subject or after two hours), an
investigator ran through the test cases that had been
provided to the subjects.

2.2 Data Collection

We collected two types of data as part of the study: artifacts
produced or modified by the subjects and a record of the
actions of the subjects during their task. The artifacts
collected include any source code changed during the task,
and any additional documents produced, such as a free-
form text file with personal notes. To record the actions of a
developer in the investigation and modification phases, we
captured a video of the screen using the Camtasia screen
recording program6 operating at 5 frames/second and a
resolution of 1; 280� 1; 024 pixels.

3 DATA ANALYSIS

Our basic strategy for data analysis is inspired by the
method described by Seaman [26]. First, we looked for
patterns, contrasts, and commonalities in the behavior of
successful versus unsuccessful developers. We then derived
observations based on a detailed study of the behavior of
developers surrounding these patterns, contrasts, and
commonalities.

This methodology required two types of data analysis:

. an evaluation of the success level of each developer,
and

. an abstraction of the behavior of each developer to
guide the detailed analysis process.

3.1 Analysis of Developer Success

We evaluated the success level of each developer by
analyzing two types of data: the time taken to complete
the change and the quality of the coded solution.

3.1.1 Time

Table 1 presents the time taken by each subject to complete
the change phase of the study (this time was capped at
125 minutes: two hours plus a five-minute grace period).

As this table shows, an important difference exists
between subjects 2 and 3, who completed the change in
just above half of the total allocated time, and subjects 1, 4,
and 5, who used practically the entire time allocated to the
change phase of the study.

3.1.2 Quality of Change

We assessed the quality of the change carried out by each
developer by inspecting the details of the source code
changes performed. This analysis was carried out by the
first author of this paper, who designed the experiment and
had a detailed understanding of the code of jEdit pertaining
to the autosave feature. Our analysis involved three steps:

1. We analyzed the jEdit source code in detail to
determine the characteristics of an ideal solution. We
considered a solution to be ideal if it correctly
implements the requirements and respects the design
of jEdit.

2. Based on our analysis of the implementation of jEdit
and the requirements of the task, we divided the task
into five subtasks. A subtask was defined as the
implementation of a relatively independent subset of
the requirements (with the exception that it could
depend on other subtasks). Although this separation
into subtasks is subjective, we found that it naturally
aligned with the requirements.

3. We examined how each subject had implemented
each subtask, and characterized its quality.

Task breakdown. Fig. 1 is a diagram representing each
subtask and the dependencies between them. The top-level
task is the complete modification task. To realize this task,
developers had to correctly implement subtasks 1 to 5,
where subtasks 2 to 5 in turn depend on the correct
implementation of subtask 1. To provide context for the

892 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

6. http://www.techsmith.com.

TABLE 1
Time Taken to Complete the Change Phase of the Study

analysis described in the rest of the paper, we describe the

challenges associated with each subtask.

1. Add check box and persist the state of autosave. This

subtask involves adding a check box widget in the

option pane for loading and saving files. Performing

this subtask requires adding code to methods _init

and _save of class LoadSaveOptionPane to
respectively show a check box to disable autosave

and to save its state when the option pane is closed.

This subtask can be considered relatively easy since

the LoadSaveOptionPane class was given as an

initial hint to the subjects, and because the code to

add has a high similarity to code that already exists

in the file to display other check boxes.
2. Reset autosave state. In the jEdit application, files are

represented in memory as instances of a Buffer

class. Buffers can be in different states, such as
“dirty” (the file contains changes not saved expli-

citly) and “autosave-dirty” (the file contains changes

saved neither explicitly nor automatically). The

implementation of this subtask is trivial, involving

one line of code, but requires a detailed knowledge

of how the state of file buffers is managed. This

knowledge involves elements such as methods

setFlag and getFlag of class Buffer, informa-
tion about accesses to a flag field in class Buffer,

and the various flag constants (e.g., AUTOSAVE_

DIRTY). This subtask is particularly difficult because

it is not explicitly mentioned in the requirements for

the change: subjects must discover that this subtask

is necessary in order to ensure a correct implementa-

tion of the requirements. However, the test suite

given to the subjects exercises this functionality.
3. Control the disabling of autosave. Once a check box is

installed in the option pane, its selection must cause
the autosave feature to be suspended. This requires

discovering 1) how to suspend the autosave feature

and 2) where to trigger the suspension. In jEdit, the

timing of the autosave feature is performed by a

class named Autosave. This class is provided as an

initial hint and is short (78 LOC). It is thus possible

to completely understand how to deactivate the
autosave feature through a systematic (i.e., line-by-

line) study of class Autosave. The problem of

identifying where to deactivate (and reactivate) the

autosave feature is much more complex. To respect

the design of jEdit, this action should be performed

in a method of the jEdit class called proper-

tiesChanged, which is used to respond to various

changes in the properties of the application. For
example, in the version of the code provided to the

subjects, propertiesChanged contains the code to

modify the frequency of the autosave events.
4. Delete autosave files when disabled. One of the require-

ments states that whenever the autosave feature is
disabled, all automatically saved backups corre-
sponding to files currently open should be deleted.
Performing this subtask requires discovering how to
obtain a list of all of the open buffers and how to
delete the autosave file associated with the buffers.
In jEdit, the simplest way to do this is to call the
static method getBuffers in class jEdit, to use
the method getAutosaveFile for each buffer, and
then to call delete on the returned File object.
Logically, this implementation should take place at
the same location as the one used to disable/enable
the autosave feature (subtask 3).

5. Prevent recovery. This subtask represents requirement
5 of our study. To implement this subtask, the

subject must identify where recovery from auto-

matically saved backups is normally triggered, and

bypass the recovery stage if the autosave feature is

disabled. This requires identifying a call between

methods load and recoverAutosave of class

Buffer, and to insert a conditional statement in

either method to bypass the recovery if the autosave
feature is disabled.

Evaluation. Given the task breakdown described above,

we inspected the solution provided by each subject and

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 893

Fig. 1. Decomposition of the requirements of the task.

characterized the success level for each subtask using the
following classifications:

. Success. The subject provided a correct solution that
respects the original design of jEdit.

. Inelegant. The subject provided a correct solution
that did not respect the original design of jEdit.

. Buggy. The subject provided a generally workable
solution that contains one or more bugs.

. Unworkable. The subject provided a solution that
does not work in most cases.

. Not attempted. The subject did not provide a
solution.

In the evaluation, correctness can be assessed objectively
by determining whether the solution meets the require-
ments and does not contain faults. However, the assessment
of whether a solution respects the existing design is
subjective. For this reason, we have been conservative in
our analysis, and judged that a solution did not respect the
existing design only if it clearly broke an existing structure
(e.g., by hard-coding a value that should have been
obtained from a property object).

Table 2 presents the characterization of the success level
for each subtask and each subject. As this table shows, all
subjects were able to complete subtask 1. The success level
for subtask 1 is not surprising given the hints provided to
the subjects, and given the natural inclination of developers
to code by example [13], [23]. The other subtasks discrimi-
nate the subjects. Subjects 1 and 5 can be considered to have
generally failed at the task. Subjects 2 and 3 were highly
successful. Specifically, subject 3’s solution is ideal, and
subject 2’s solution contains only a very small logic error,
where a flag is reset to false instead of the value of
another flag. Finally, subject 4’s solution can be considered
“average,” as it is a workable but generally low-quality
implementation.

3.1.3 Overall Analysis

Given that subjects 2 and 3 completed the task in close to half
the time allotted and provided a high-quality solution, we
can confidently characterize these subjects as “successful.”

Because subjects 1 and 5 could not provide a working
solution in the time alloted, we consider these subjects
“unsuccessful.” With a workable yet low-quality solution,
subject 4 cannot be associated with either of the two
extremes, and will be referred to as “average.” Table 3
provides information on the background of the subjects,
showing the approximate and self-reported number of years
of programming experience of each subject. Not surpris-
ingly, the unsuccessful subjects are also the less experienced.
However, the two successful subjects are not the two most
experienced subjects. In any case, the focus of our study was
to determine why certain developers are efficient, indepen-
dently of their background. Our intent is in part to help
make novice developers more quickly reach the efficiency
level of more experienced developers.

3.2 Abstraction of Developer Behavior

To perform a high-level analysis of the behavior of each
developer in our study, we needed an abstraction of their
actions. For this reason, we transcribed the videos produced
during the investigation and change phases for each subject.
Transcribing information-rich media like video inevitably
involves deciding which information to include and which
to leave out. Because we were mostly interested in studying
how each developer navigated through the program code,
we produced transcripts listing each method a developer
examined during the study. Specifically, for each phase of
the study and each subject, we transcribed the correspond-
ing video into a list of events defined as evidence that a
developer may be examining the implementation of a
method in a code editor. A new event is created every time
a new method is displayed in the code editor. For each
event we recorded the following information:

. Time. The time at which a program investigation
event is observed.

. Method. The method examined by the developer at
the time of the event.

. Navigation. The way the method was accessed.

. Modification. Whether the method examined was
also modified (for the change phase only).

894 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

TABLE 2
Solution Quality for Each Subject

The navigation techniques we considered were the
following:

. Scrolling. The subject reveals a method by scrolling
up or down a source file.

. Browsing. The subject reveals a method by selecting
it in a code browser.7

. Cross-reference. The subject reveals a method by
following a cross-reference in the code.

. Recall. The subject reveals a method by returning to
an already open editor window.

. Keyword search. The subject reveals a method by
performing a keyword search.

As an example, Table 4 shows a partial transcript from
subject 1 in the study. As this transcript shows, the behavior
observed involves the subject revealing method B89

8

through a keyword search, then switching to previously
examined method A4, then recalling method L3, and finally
scrolling within the file to reveal method L2.

The main challenge with coding video data into a
transcript that abstracts program navigation as a sequence
of method examination events is to determine which
method a developer is examining at any point in time. In
many cases, it is possible to unambiguously determine this
information. For example, when there is only one method
displayed in the editor, or when a method is revealed
explicitly through an action such as selecting the method
from a list. However, in many cases, it was necessary to
determine which method was being examined based on
more subtle clues such as a mouse pointer hovering over a
certain area of the code. This problem made it necessary for
an investigator to manually code the entire transcript,
introducing a certain amount of subjectivity into the coding.

To address the subjectivity of the coding, two investiga-
tors independently coded each video. Table 5 shows the
correlations between the transcripts for each subject in
terms of common events versus the total number of events
(averaged over the two transcripts). The length of the
transcripts varied between 35 and 112 events for the
investigation phase and between 30 and 164 events for the
change phase.

These results show an inter-coder accuracy varying
between 73 percent and 83 percent. Most of the discrepan-
cies between coders fall into two categories: not including
an event because a method was examined too fast by a
subject, or not including methods because there is not
enough evidence that the method on the screen is actually

the one investigated. We feel this level of accuracy is

sufficient for our purposes since the observations we make

based on the transcripts are not affected by the differences

in the coding of transcripts and because most of the

observations relied on both the transcripts and a detailed

reinvestigation of the videos.

4 RESULTS

Based on a detailed analysis of the data collected during the

study, we made several observations about the program

investigation behavior of both the successful and unsuc-

cessful subjects. From these observations, we derived

hypotheses about the intrinsic factors influencing the

success of developers. We express our findings as a theory

of effective program investigation. This theory is formu-

lated as a high-level statement that summarizes our

observations and hypotheses. Our general theory of

program investigation effectiveness can be stated as

follows:

Theory. During a program investigation task, a methodical

investigation of the code of a system is more effective than an

opportunistic approach.9

What this theory synthesizes is that during a program

investigation session, the successful subjects seemed to be

trying to answer specific questions using focused searches.

They also recorded their findings in detail, prepared a

modification plan, and mostly kept to this plan while

implementing the change. In contrast, the unsuccessful

subjects exhibited a more opportunistic approach that can

be summarized as involving more guessing. Perhaps

surprisingly, the effort spent by subjects planning their

change did not translate into a longer time required to

perform the task. In fact, subjects who were methodical

performed the task in half of the time. This being said, the

theory does not imply that a purely systematic approach to

program investigation is the most effective. Successful

subjects also exhibited some opportunistic behavior. How-

ever, they exhibited opportunistic behavior much less often

than unsuccessful subjects.

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 895

TABLE 3
Programming Experience of Subjects

TABLE 4
Transcript Excerpt

7. In our study, the code browser corresponded to the Eclipse Package
Explorer View.

8. Indices are used instead of method names for simplicity.

9. We use the term methodical in its general sense, to indicate a behavior
characterized by method and order. This term can be contrasted with
systematic, which we use to refer to a line-by-line investigation of the entire
source code. We use the term opportunistic as an antonym of methodical.

In the rest of this section, we present specific observa-
tions we have made about the program investigation
behavior of developers during our study. For each observa-
tion, we summarize the supporting evidence, propose a
hypothesis to explain the observation, detail any additional
evidence that specifically supports the hypothesis, and
briefly discuss the implications of the observation for the
field of software engineering.

Observation 1 (Locality of Changes). Unsuccessful subjects
made all of their code modifications in one place even if they
should have been scattered to better align with the existing
design.

The inspection of the solution for each subject showed
that the subjects who provided an unacceptable or average
solution (i.e., subjects 1, 4, and 5) had an implementation
where all of the solution implementation was located
predominantly in one method, which did not respect the
existing design. Specifically, subjects 1 and 5 tried to
implement the entire functionality in methods _save and
_init of class LoadSaveOptionPane, respectively, and
subject 4 implemented all the functionality in method
autosave of class Buffer. This observation of the code is
corroborated by the following characterization of the
behavior of the subjects during the program change phase.
Fig. 2 shows, for each subject, the three methods that were
modified the most often, with the bars representing the total
number of modifications. A method is modified if, during
the event associated with it, the subject modified code in the
method (see Section 3.2). The name of the method modified
most often is also indicated on the figure, and the error bars

represent the difference between the two independent
codings of the transcripts. As Fig. 2 shows, all subjects
except for subject 3 (ideal solution) present a high number
of modification events for one method corresponding to the
method where most of the change was implemented, and
little activity for other methods. In contrast, subject 3 shows
a much more even pattern of code modification. This points
to the possibility that developers (in our case, even some
successful developers) have the tendency to focus all of
their changes in one location.

Based on this evidence we propose the following
hypothesis.

Hypothesis. Inadequate investigation prior to performing a
change task limits the understanding of the existing design
of a system, leading to a change performed in a single
location in the code that is better understood by the
developer. In other words, inadequate investigation leads to
“ignorant surgery” [21].

Additional support for our hypothesis that colocated
modifications are the result of inadequate planning comes
from observing that the investigation of the unsuccessful
subjects during the investigation phase was desultory and
limited. This observation is made by characterizing the
investigation performed by each subject during the inves-
tigation phase.

Table 6 gives a high-level characterization of the
behavior of each subject during the program investigation
phase. The second column lists the number of distinct
methods examined by each subject (presented as an average
over the two transcripts, with the boundaries). The third
column shows the proportion of intent-driven discovery
events (cross-references and keyword searches) versus the
total number of events (including scrolling, browsing, and
recalling). This table again presents a sharp contrast
between unsuccessful subjects (1, 5) and successful subjects
(2, 3). The successful subjects are seen to have investigated
more methods during the investigation phase and to have
relied more on cross-reference and keyword searches. In
contrast, unsuccessful subjects examined very few methods,
and relied more on unstructured techniques such as

896 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

TABLE 5
Transcript Correlation

Fig. 2. Methods modified often during the change phase.

scrolling and browsing. However, this high-level character-
ization does not help to explain the behavior of the average
subject (subject 4). Although this subject’s solution exhib-
ited the problem of being colocated (although to a lesser
degree), the abstract behavior of the subject is associated
with the one of the successful subjects. This suggests that
factors that cannot be characterized by a coarse abstraction
of the programmer behavior also come into play, such as
how well the information investigated is retained. Observa-
tion 3 (below) potentially explains the case of subject 4.

Implications. Assuming the design of a system is not
known, a broad cross-section of the system potentially
impacted by the change needs to be investigated prior to
making a change in order to allow reasoning about
design. In other words developers should not rely on
studying specific locations in detail with the hope of
performing a surgical change as this may lead to code
decay.

Observation 2 (Inattention Blindness During Program

Investigation). Program segments that were clearly relevant
to the change task were not acknowledged when displayed
accidentally.

This observation was made when we tried to understand

why subjects 1 and 5 did not realize that method proper-

tiesChanged in class jEdit was the key to the success of

the task, and as a result could not produce a workable

solution (see subtask 3, Section 3.1.2). Subject 5 never

investigated the method, which explains the problem.

However, the case of subject 1 is more interesting. This

subject displayed method propertiesChanged while

scrolling the code of class jEdit. At one point, the subject

pauses and the code of the method is shown on the screen,

with keywords visible that are strongly associated with the

task (e.g., “Autosave”). However, at this point the subject

takes no action that indicates that the information was

acknowledged. Based on these observations we propose the

following hypothesis.

Hypothesis. Program information relevant to a change is
discovered only if it is searched for explicitly. In other words,
the hypothesis of “no conscious perception without attention”

elaborated in the field of cognitive psychology [17] may apply
to program investigation activities.

The hypothesis of inattention blindness is not refuted by
the successful and average subjects since all three found the
method through a cross-reference (i.e., explicit) search, and
the two successful subjects incorporated the method in the
design of their solution.

Implications. The impact of this hypothesis for program
investigation tasks is that broad searches without a
specific discovery purpose (i.e., skimming the source
code) are of little value and should be limited. If our
hypothesis holds, unfocused code investigation behavior
is open to the problem of inattention blindness.

Observation 3 (Planning). The successful subjects created a
detailed and complete plan prior to the change whereas the
unsuccessful and average subjects did not.

The written instructions provided to the subjects as part
of the study stated that any notes they wished to make
should be saved in a text file. During the investigation
phase, every subject chose to record some information in a
text file. Some subjects wrote vague comments on what they
intended to do and what they had discovered about how
the system worked. Other subjects created a detailed
implementation plan that included the names of methods
to be modified. We found that subjects who produced the
best solutions created and followed a detailed change plan.

Specifically, we considered the content of each subject’s
notes file as they began the execution phase of the change
task. For each subject, we compared the methods intended
for modification according to the notes file with the
methods actually modified. We also considered the nature
and level of detail of the recorded notes.

Subject 3 implemented an ideal solution to the requested
task and subject 2’s solution was very close to ideal. Both
subjects 2 and 3 chose to produce a detailed plan for making
the change that included the names of methods that were to
be modified. Subject 2 did not modify any methods that
were not previously documented as part of the change task.
Subject 3 modified only a single method that was not part of
his plan and later returned this method to its original state.

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 897

TABLE 6
Characterization of the Investigation Phase

This shows that subjects 2 and 3 created complete plans and
followed them to produce quality solutions.

The notes for subject 4, whose solution was of average
quality, identified three methods to be modified, but seven
methods were actually modified during the modification
phase. This suggests that subject 4 did not create a complete
plan before proceeding with the implementation. Although
subject 4 was able to implement the requested change, the
solution was of average quality.

Subject 5’s notes included a 10-step plan for implement-
ing the required changes. However, the notes were of a
high-level nature that described what was to be discovered
but did not include actual changes to be made. Although
related classes were identified, the plan did not include the
name of any methods. Subject 5 modified four methods but
was unable to implement the requested change.

Subject 1 was also unable to implement the required
changes. Subject 1’s notes identified three methods to be
modified. All three of these methods plus an additional
method that was not in the plan were modified during the
execution phase. This shows that Subject 1 created a plan
and followed it to some extent. However, the plan was
incomplete, as was the implemented change.

Based on this evidence we propose the following
hypothesis.

Hypothesis. Making a detailed change plan allows developers to
1) reason about the extent of the code investigated and assess
whether it is sufficient, 2) perform focused program searches in
the context of the elaboration of a solution, and 3) eases the
cognitive load on developers.

Implications. Developers should investigate the code of a
system related to a change in the context of a change plan
explicitly supported by an external medium (e.g., a text
file or a dedicated software engineering tool).

Observation 4 (Reinvestigation Frequency). Successful
subjects did not reinvestigate methods as frequently as
unsuccessful subjects.

One way to characterize the behavior of subjects is to
look at how often they return to previously investigated
methods. Intuitively, a methodical change should involve a

mostly linear traversal of the code, with few cycles, whereas
we expect an opportunistic approach to involve more
iterations. Indeed, in our study we found that the successful
subjects navigated the code with longer method investiga-
tion cycles.

Specifically, we analyzed the transcripts of each subject’s
program investigation behavior to determine how fre-
quently methods were reinvestigated. To characterize the
iterative nature of the program investigation behavior, we
proceeded as follows. Given a sequence of investigated
methods from each transcript, we defined a window of n
methods. The window was then advanced through the
entire transcript one event at a time to consider all
consecutive sets of n events. For each window, the number
of times a method was reinvestigated was computed. To
summarize our analysis, we computed the average number
of reinvestigated methods per window. This number
provides a measure of the degree to which method
navigation events were focused on a small number of
methods at a time. Table 7 shows this high-level character-
ization of the behavior for each subject for window sizes of
10 and 20 methods, respectively.

This table shows a contrast between subjects 2, 3, and 4
(the successful and average subjects, with a value below
3.5), and subjects 1 and 5 (the unsuccessful subjects, with a
value above 4.6). This contrast is robust in terms of window
size since we observe it for window sizes of both 10 and
20 events (with different values).

To increase our confidence in our high-level assessment,
we also characterized the iterative behavior of subjects in
terms of the average length of method investigation cycles.
We defined an investigation cycle as the investigation of a
method followed by the investigation of one or more other
methods followed by reinvestigation of the original method.
The length of a cycle is simply the number of methods in the
cycle. The analysis of subject behavior using this character-
ization is consistent with our previous one. Specifically,
subjects 2, 3, and 4 navigated with longer cycles than
subjects 1 and 5. Table 8 lists the average cycle length for
each subject.

There are several possible hypotheses that may explain
this relationship between reinvestigation frequency and
change task implementation success.

898 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

TABLE 7
Average Reinvestigations per Window

TABLE 8
Average Method Investigation Cycle Length

Hypotheses.

. Developers who are better able to assess the importance
of methods they are investigating are more effective.
They can identify key methods and spend more time
understanding them early in the investigation rather
than returning to them only later when their relevance
is more evident.

. Developers who are better able to understand and
remember the methods they have investigated are more
effective; they do not need to reinvestigate those
methods as frequently.

. Developers who have difficulty discovering new
relevant methods are less effective; they spend more
time reinvestigating methods that have been previously
identified as important to the change task.

Implications. The first hypothesis suggests that developers

should carefully assess the potential relevance of each

method investigated. If it is possible that the method is

relevant to the change task, it may be beneficial to

understand its function thoroughly before proceeding, as

this strategy may avoid repeated future reinvestigations.

The second and third hypotheses suggest that tools

should be used to assist programmers with discovering,

understanding and remembering relevant methods. For

example, when a developer identifies a relevant method a

tool could be used to identify related methods that are also

potentially relevant. Tools could also be used to organize

and annotate methods that have been discovered and

understood.

Observation 5 (Structurally Guided Searches). The success-

ful subjects performed mostly structurally guided searches

(e.g., keyword and cross-reference searches), rather than

searches based on intuition (browsing) or aligned with the

file decomposition of the system (scrolling).

We consider keyword searches to be structurally guided

because, as we observed, the input to keyword searches and

their output is very often the name of program structures
(e,g, fields and methods), rather than purely lexical
information such as comments.

Evidence of the effectiveness of structurally guided
searches comes from two sources involving both a high-
level analysis of the transcripts and a detailed analysis of
the videos.

A first source of evidence is a high-level analysis of the
navigation methods used by each subject. To characterize
the general style of navigation method used by a subject we
computed the ratio of events in both phases where the
navigation method was “keyword” or “cross-reference,”
and divided this number by the total number of nonrecall
events. This characterization differs from the one presented
in Table 6 because it does not include recall events in the
denominator of the ratio. This has an important conse-
quence for the interpretation of the results: including recall
events provides a characterization of what subjects do, while
excluding recall events provides a characterization of how
subjects search. Fig. 3 illustrates this last characterization of
subject behavior. Each bar represents the ratio for a subject
(in percentage points), and the error bars represent the
difference between the two independent codings of the
transcripts. Again, this figure shows a contrast between the
unsuccessful subjects (1 and 5) and the successful and
average subjects (2, 3, 4).

A second source of evidence for this observation is
simply a corroboration with the evidence provided for
Observation 2 stating that the successful and average
subjects had all identified the most critical method for the
change through a cross-reference query.

Based on this evidence, we propose the following
hypothesis.

Hypothesis. Without a detailed knowledge of the implementa-
tion of a system, guessing which method to look at based on its
name (browsing) or looking at methods simply because they are
in the same file as another relevant method (scrolling) is not as
effective as performing structurally guided searches.

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 899

Fig. 3. Ratios of structurally guided searches.

Implications. Developers should resist the temptation to try
to guess the code relevant to a change based on
nonstructural clues. In other words, developers should
minimize the use of scrolling. Even though this strategy
may seem more effective that methodically investigating
the structural links in a system, our study provides
evidence that it is not.

5 EXPERIMENTAL CRITIQUE

Several factors potentially affect the validity of our study.

5.1 Construct Validity

The test of construct validity questions whether the opera-

tional measures used correctly reflect the concept studied

[35]. Ensuring construct validity is generally a difficult

problem in empirical studies of programmers involving

multiple subjects. Abstracting the behavior of developers or

the result of their task inevitably introduces the possibility

for the variables studied to not truly represent the

phenomenon observed. Realizing this challenge, one of

the main goals of our study was to analyze the behavior of

developers in detail and thus, implicitly, ensure a high level

of construct validity. Specifically, our study relies on two

main measures: the evaluation of each developer’s solution

and an analysis of the behavior of the developers. To

evaluate the solution produced by the subjects, we

performed a detailed inspection of the source code for the

solution of each developer. Although our final evaluation

relies on a subjective assessment of the quality of the

solution, this assessment is directly based on the unab-

stracted raw data collected, and as such we have a high

confidence in the validity of the evaluation. To analyze the

behavior of the developers, we partly relied on transcripts

which are an approximation of the data recorded. To

compensate for the potential errors of interpretation due to

the use of transcripts, we corroborated our observations

with detailed analysis of the videos whenever possible and,

in some cases (e.g., observation 1), we corroborated our

findings with data from the code modifications performed

by the subjects. The use of multiple sources of evidence is

generally considered to increase the validity of qualitative

assessments [3].

5.2 Internal Validity

The test of internal validity for a study questions whether the
results truly represent “a causal relationship, whereby
certain conditions are shown to lead to other conditions,
as distinguished from spurious relationships.” [35, p. 33].
Since our study was exploratory, internal validity in our
case relates to the soundness of the evidence used to make
hypotheses. We thus discuss the factors potentially affecting
our observations, and our attempts to limit them.

One possible source of interference for this study is the
possibility that the success level for a subject was
determined by prior knowledge, proficiency with the
development environment, and investigator bias during
the study. To reduce this possibility, we took steps to ensure
that no subject had prior knowledge of jEdit, we asked
subjects not to communicate the details of the study to

others, we provided basic training with Eclipse to each
subject, we precluded the use of powerful features of
Eclipse, such as the debugger, and we scripted the entire
study, limiting the role of the investigator to answering
questions. There is always the possibility of investigator
bias in the answers to the subject’s questions. To limit this
effect, we established guidelines at the start of the study for
the investigator to use in answering questions: The
investigator was to only answer questions about the
features of the tools covered in the tutorial, and provide
no comment about the task.

Another possibility is that the experimental setup may
have affected the behavior of the subjects. In particular, the
explicit separation of the task into an investigation and
change phase, the use of test cases, and the constraint
preventing subjects from modifying the code in the
investigation phase, may have caused adjustments to the
subjects’ behavior. However, we feel that the impact of
these necessary constraints is lessened by the fact that the
primary object of our study is not the behavior of
developers per se, but rather the contrast between the
behavior of different developers.

Finally, there exists the possibility that the evaluation of
the solution presented in Section 3.1.2 may influence the
results. However, this analysis was carefully performed by
an investigator who had detailed knowledge of the code of
jEdit pertaining to the study. Subjectivity in assessing
design was addressed through the use of a conservative
criterion. Also, the differences observed between subjects
were so large that the evaluation is likely to be robust in the
face of a different categorization. In any case, our analysis is
transparent: Independent researchers can access the code of
jEdit and evaluate the solution. Our general belief is that the
evaluation of the solution is stable and poses limited threats
to the validity of the study.

5.3 External Validity

The applicability of our findings must be carefully
established. All of the subjects were either students or
recent graduates from a computer science department.
Different results might be obtained from different popula-
tions such as, for example, a population of senior devel-
opers not formally trained in object-oriented programming.
Another threat to the generality of our study is our use of a
single task. Although our study involved a nontrivial task
requiring developers to reason about different aspects of the
system (e.g., control-flow, state transitions), there exists
many different types of software modification problems.
We do not expect that identical results will be obtained for
all problems. In particular, modification tasks involving
surgical changes to a single location may yield different
results. Nevertheless, we believe that our use of a real task
in a program large enough that it cannot be completely
understood in a short amount of time contributes to
achieving an acceptable level of external validity.

The software development environment and program-
ming language used by the subjects were also fixed. This
additional factor limits the generalizability of the study to
similar conditions. However, in the case of the development
environment, by limiting the use of advanced functional-
ities, we ensured that the results were not dependent on

900 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

platform-specific features. Many integrated software devel-
opment environments offer features such as the ones used
in this study, and we can expect that they are used in a
similar fashion.

Finally, an important limit to the generalizability of our
findings comes from the fact that we have based our
observations on the analysis of the behavior of only five
subjects. We could gain additional confidence in our
hypotheses by studying more subjects from a larger cross-
section of backgrounds. However, by focusing our study on
the link between the program investigation behavior and
the effectiveness of developers, we limit the risk of our
hypotheses not being robust in the face of the personal
characteristics of developers that are reflected in the
program investigation behavior.

5.4 Reliability

The methodology of this study, including the data collec-
tion procedures, has been documented in this paper. The
task was defined in detail and an open-source code base
was used as a target system. The complete experimental
material can be obtained from http://www.cs.mcgill.ca/
~martin/tse1. As a result, it should be possible to replicate
the study.

6 RELATED WORK

Many empirical studies of programmers have been
reported in the literature (see Basili et al. [1] for an overview
of the foundational work on this topic). In this section, we
provide a brief survey of the studies that focused on
program understanding for the purpose of software change
tasks, and discuss the novelty of our research in this
context.

Letovsky and Soloway performed seminal work on the
topic of program understanding. An early study of six
professional programmers modifying a 300LOC Fortran 77
program focused on eliciting the causes of comprehension
failures, and determined that such failures were often
caused by the presence of “delocalized plans” [16]. In
another study of 20 programmers modifying a 250LOC
Fortran program, Soloway et al. focused on understanding
the strategies developers used during a program under-
standing task [28], and concluded that programmers whose
strategy was to systematically study a program line-by-line
made fewer errors than the ones using an opportunistic (or
“as needed”) approach [28]. Our study shares some
commonalities with these early studies of Fortran program-
mers. Notably, both our approaches were exploratory and
focused on understanding the details of the programmer
behavior in terms of source code modified. However, our
experimental methods differ. Soloway et al. used protocol
analysis (where subjects are asked to “think aloud”),
whereas we judged this technique too disruptive and
focused only on the analysis of screen recordings. More
important, the target programs used by Letovsky and
Soloway were small enough to be analyzed systematically.
Judging this an unrealistic scenario in the general case, we
used a target program too large to be fully understood by
the subjects.

Corritore and Wiedenbeck [5], [6], [7], Engebretson and

Wiedenbeck [11], Mosemann and Wiedenbeck [18], and

Wiedenbeck et al. [34] carried out many studies to

investigate various characteristics of developers involved

in program understanding tasks. All these studies share a

common methodology. First, a large set of subjects (30-100)

studies (and in some cases, modifies) one or more small

programs (less than 800LOC). Then, the subjects are asked

questions intended to test different aspects of their under-

standing of the target program. Finally, statistical analysis is

performed to test hypotheses concerning their understand-

ing. The main difference between the studies described

above and our work lies in the choice of methodology. In

contrast to a highly controlled experiment, we used a more

realistic setting and performed a more detailed analysis, at

the cost of not being able to statistically infer causality. For

this reason, the nature of the results are also different:

Rather than statistical evidence supporting a small set of

hypotheses, we contribute detailed and context-rich data

potentially explaining the behavior of developers.
Using the technique of protocol analysis, Vans et al. [31],

von Mayrhauser and Vans [32], and von Mayrhauser et al.
[33] studied the comprehension processes of programmers
during large-scale corrective and perfective maintenance.
The approach of von Mayrhauser, et al. also involved the
detailed analysis of few subjects (one, two, and four,
respectively), and as such can be considered closer to our
approach than the studies of Wiedenbeck et al. However,
the focus of von Mayrhauser’ work was to investigate the
cognitive processes of programmers. As a result, the
principal source of data is the utterances of the subjects.
This is in contrast to our approach, where we have spent
most of our effort analyzing the navigation behavior of the
subjects.

To summarize, in contrast to previous work, the novelty
of our study is that it not only looked at what developers do
in general, but focused on determining what successful
developers do in contrast to unsuccessful ones. This
comparative analysis allowed us to make detailed hypoth-
eses about the style of program investigation behavior that
contributes to effectiveness at program modification tasks.

7 CONCLUSIONS

Prior to performing a software modification task, devel-
opers must inevitably investigate the code of the target
system in order to find and understand the code related to
the change. If we assume that the way a developer
investigates a program influences the success of the
modification task, then ensuring that developers in charge
of modifying software systems investigate the code of the
system effectively can yield important benefits such as
decreasing the cost of performing software changes and
increasing the quality of the change.

The empirical study described in this paper investigated
the links between program investigation behavior and
success at a software modification task. Although many
empirical studies of programmers have analyzed what
developers do during program modification tasks, our
study is novel in that it considered specifically what effective

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 901

developers do in contrast to ineffective ones. This analysis
was possible because we replicated the study of a developer
performing a highly realistic task.

Based on our analysis of the data collected during the
study, we observed many sharp contrasts between the
behavior of successful and unsuccessful developers and
came to the conclusion that in the context of a program

investigation task, a methodical investigation of the code of a

system is more effective than an opportunistic approach. This
theory does not imply that a complete line-by-line investi-
gation of a program is the most effective approach, but
rather that developers should follow a general plan when
investigating a program, should perform focused searches
in the context of this plan, and should keep some form of
record of their findings. Although this theory will sound
intuitive to many, some of our detailed observations include
more surprising results, such as the ineffectiveness of the
code reading strategy, and the fact that a methodical
approach to program investigation does not require more
time than an opportunistic approach.

The contributions of our research to the software
engineering community are twofold. First, we provide a
set of detailed observations about the characteristics of
effective program investigation behavior. Although our
observations are descriptive, they are accompanied by
hypotheses that can be validated by additional research
and practical experience. Second, we provide a detailed
methodology for performing empirical studies of program-
mers where it is important that programmer behavior be
studied in detail. Researchers can reuse our study to help
validate our hypotheses, or to study other aspects of
programmer behavior.

ACKNOWLEDGMENTS

The authors are grateful to Davor �CCubrani�cc and to the
anonymous reviewers for their valuable comments. This
research was funded by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and by IBM.

REFERENCES

[1] V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in
Software Engineering,” IEEE Trans. Software Eng., vol. 12, no. 7,
pp. 733-743, July 1986.

[2] B.W. Boehm, “Software Engineering,” IEEE Trans. Computers,
vol. 12, no. 25, pp. 1226-1242, Dec. 1976.

[3] L. Bratthall and M. Jørgensen, “Can You Trust a Single Data
Source Exploratory Software Engineering Case Study?” Empirical
Software Eng., vol. 7, no. 1, pp. 9-26, Mar. 2002.

[4] Y.-F. Chen, M.Y. Nishimoto, and C.V. Ramamoorthy, “The C
Information Abstraction System,” IEEE Trans. Software Eng.,
vol. 16, no. 3, pp. 325-334, Mar. 1990.

[5] C.L. Corritore and S. Wiedenbeck, “Mental Representation of
Expert Procedural and Object-Oriented Programmers in a Soft-
ware Maintenance Task,” Int’l J. Human-Computer Studies, vol. 50,
no. 1, pp. 61-83, Jan. 1999.

[6] C.L. Corritore and S. Wiedenbeck, “Direction and Scope of
Comprehension-Related Activities by Procedural and Object-
Oriented Programmers: An Empirical Study,” Proc. Eighth Int’l
Workshop Program Comprehension, pp. 139-148, June 2000.

[7] C.L. Corritore and S. Wiedenbeck, “An Exploratory Study of
Program Comprehension Strategies of Procedural and Object-
Oriented Programmers,” Int’l J. Human-Computer Studies, vol. 54,
no. 1, pp. 1-23, Jan. 2001.

[8] B. Curtis, “Substantiating Programmer Variability,” Proc. IEEE,
vol. 69, no. 7, pp. 846, July 1981.

[9] T. DeMarco and T. Lister, “Programmer Performance and the
Effects of the Workplace,” Proc. Eighth Int’l Conf. Software Eng.,
pp. 268-272, 1985.

[10] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus,
“Does Code Decay? Assessing the Evidence from Change
Management Data,” IEEE Trans. Software Eng., vol. 27, no. 1,
pp. 1-12, 2001.

[11] A. Engebretson and S. Wiedenbeck, “Novice Comprehension of
Program Using Task-Specific and Nontask-Specific Constructs,”
Proc. IEEE 2002 Symp. Human Centric Computing Languages and
Environments, pp. 11-18, Sept. 2002.

[12] A. Goldberg, Smalltalk-80: The Interactive Programming Environ-
ment. Addison-Wesley, 1984.

[13] B.M. Lange and T.G. Moher, “Some Strategies of Reuse in an
Object-Oriented Programming Environment,” Proc. SIGCHI Conf.
Human Factors in Computing Systems, pp. 69-73, 1989.

[14] M.M. Lehman and L.A. Belady, “Program Evolution: Processes of
Software Change,” APIC Studies in Data Processing, vol. 27, 1985.

[15] M. Lejter, S. Meyers, and S.P. Reiss, “Support for Maintaining
Object-Oriented Programs,” IEEE Trans. Software Eng., vol. 18,
no. 12, pp. 1045-1052, Dec. 1992.

[16] S. Letovsky and E. Soloway, “Delocalized Plans and Program
Comprehension,” IEEE Software, vol. 3, no. 3, pp. 41-49, May 1986.

[17] A. Mack and I. Rock, Inattentional Blindness. MIT Press, 1998.
[18] R. Mosemann and S. Wiedenbeck, “Navigation and Comprehen-

sion of Programs by Novice Programmers,” Proc. Ninth Int’l
Workshop Program Comprehension, pp. 79-88, May 2001.

[19] Object Technology International, Inc., “Eclipse Platform Technical
Overview,” white paper, July 2001.

[20] P.D. O’Brien, D.C. Halbert, and M.F. Kilian, “The Trellis
Programming Environment,” Proc. Conf. Object-Oriented Program-
ming, Systems, and Applications, pp. 91-102, Oct. 1987.

[21] D.L. Parnas, “Sofware Aging,” Proc. 16th Int’l Conf. Software Eng.,
pp. 279-287, May 1994.

[22] S.L. Pfleeger, “Experimental Design and Analysis in Software
Engineering—Part 3: Types of Experimental Design,” Software
Eng. Notes, vol. 20, no. 2, pp. 14-16, Apr. 1995.

[23] D.F. Redmiles, “Reducing the Variability of Programmers’
Performance Through Explained Examples,” Proc. Conf. Human
Factors in Computing Systems, pp. 67-73, 1993.

[24] H. Sackman, W.J. Erikson, and E.E. Grant, “Exploratory Experi-
mental Studies Comparing Online and Offline Programming
Performance,” Comm. ACM, vol. 11, no. 1, pp. 3-11, 1968.

[25] M. Sanella, The Interlisp-D Reference Manual. Xerox Corporation,
Palo Alto, Calif., 1983.

[26] C.B. Seaman, “Qualitative Methods in Empirical Studies of
Software Engineering,” IEEE Trans. Software Eng., vol. 25, no. 4,
pp. 557-572, July/Aug. 1999.

[27] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An
Examination of Software Engineering Work Practices,” Proc.
1997 Conf. Centre for Advanced Studies on Collaborative Research,
pp. 209-223, 1997.

[28] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert,
“Designing Documentation to Compensate for Delocalized
Plans,” Comm. ACM, vol. 31, no. 11, pp. 1259-1267, Nov. 1988.

[29] B. Teasley, L.M. Leventhal, K. Instone, and D.S. Rohlman,
“Longitudinal Studies of the Relation of Programmer Expertise
and Role-Expressiveness to Program Comprehension,” Proc.
NATO Advanced Research Workshop User-Centred Requirements for
Software Eng. Environments, NATO Advanced Science Institutes
Series-Computer and Systems Science, vol. 123, pp. 143-163, Sept.
1991.

[30] W. Teitelman and L. Masinter, “The Interlisp Programming
Environment,” Computer, vol. 14, no. 4, pp. 25-33, Apr. 1981.

[31] A.M. Vans, A. von Mayrhauser, and G. Somlo, “Program
Understanding Behavior during Corrective Maintenance of
Large-Scale Software,” Int’l J. Human-Computer Studies, vol. 51,
no. 1, pp. 31-70, July 1999.

[32] A. von Mayrhauser and A.M. Vans, “Identification of Dynamic
Comprehension Processes during Large Scale Maintenance,” IEEE
Trans. Software Eng., vol. 22, no. 6, pp. 424-437, 1996.

[33] A. von Mayrhauser, A.M. Vans, and A.E. Howe, “Program
Understanding Behaviour during Enhancement of Large-Scale
Software,” J. Software Maintenance: Research and Practice, vol. 9,
no. 5, pp. 299-327, Sept./Oct. 1997.

902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

[34] S. Wiedenbeck, V. Fix, and J. Scholtz, “Characteristics of the
Mental Representations of Novice and Expert Programmers: An
Empirical Study,” Int’l J. Man-Machine Studies, vol. 39, pp. 793-812,
1993.

[35] R.K. Yin, “Case Study Research: Design and Methods,” Applied
Social Research Methods Series, vol. 5, second ed. 1989.

Martin P. Robillard received the BEng degree
in computer engineering from �EEcole Polytechni-
que de Montréal in 1997 and the MSc and PhD
degrees in computer science from the University
of British Columbia in 1999 and 2004, respec-
tively. He is currently an assistant professor in
the School of Computer Science at McGill
University. His research interests are in software
evolution, aspect-oriented software develop-
ment, and empirical software engineering.

Wesley Coelho received the Bachelor of
Commerce degree from the University of Victor-
ia in 2000. He is currently a master’s student in
the Department of Computer Science at the
University of British Columbia. His research
interests are in aspect-oriented programming
and model-based development tools.

Gail C. Murphy received the BSc degree in
computing science from the University of Alberta
in 1987 and the MS and PhD degrees in
computer science and engineering from the
University of Washington in 1994 and 1996,
respectively. From 1987 to 1992, she worked as
a software designer in industry. She is currently
an associate professor in the Department of
Computer Science at the University of British
Columbia. Her research interests are in software

evolution, software design, and source code analysis. She is a member
of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ROBILLARD ET AL.: HOW EFFECTIVE DEVELOPERS INVESTIGATE SOURCE CODE: AN EXPLORATORY STUDY 903

