Constraint Programming in Constraint Nets

Ying Zhang Alan K. Mackworth *
Department of Computer Science Department of Computer Science
University of British Columbia University of British Columbia
Vancouver, B.C. Vancouver, B.C.
Canada V6T 172 Canada V6T 1722
zhang@cs.ubc.ca mack@cs.ubc.ca
Abstract

We view constraints as relations and constraint satisfaction as a dynamic process of approaching a
stable equilibrium. We have developed an algebraic model of dynamics, called Constraint Nets, to provide
a real-time programming semantics and to model and analyze dynamic systems. In this paper, we explore
the relationship between constraint satisfaction and constraint nets by showing how to implement various
constraint methods on constraint nets.

1 Motivation

Constraints are relations among entities. Constraint satisfaction can be viewed in two different ways. First,
in the logical deductive view, a constraint system is a structure (D,}), where D is a set of constraints and
I is an entailment relation between constraints [20]. In this view, constraint satisfaction is seen as a process
involving multiple agents concurrently interacting on the store-as-constraint system by checking entailment
and consistency relations and refining the system monotonically. This approach is useful in database or
knowledge-based systems, and can be embedded in logic programming languages {2, 5, 9]. Characteristically,
the global constraint is not explicitly represented, even though for any given relation tuple the system is able
to check whether or not it is entailed.

An alternative view, more appropriate for real-time embedded systems, is to formulate the constraint
satisfaction problem as finding a relation tuple that is entailed by a given set of constraints [12]. In this paper,
we present an approach to this problem. In this approach, constraint satisfaction is a dynamic process with
each solution as a stable equilibrium, and the solution set as an attractor of the process. “Monotonicity” is
characterized by a Liapunov function, representing the “distance” to the set of solutions over time. Moreover,
soft as well as hard constraints can be represented and solved. This approach has been taken in neural nets
[18], optimization, graphical simulation [16] and robot control [15]; however, it has not yet been investigated
seriously in the area of constraint programming.

We have developed and implemented an algebraic model of dynamics, called Constraint Nets (CN), to
provide a real-time programming semantics [22] and to model and analyze robotic systems [23]. Here we
investigate the relationship between constraint satisfaction and constraint nets. The rest of this paper is
organized as follows. Section 2 describes some basic concepts of dynamic systems. Section 3 introduces Con-
straint Nets. Section 4 presents various constraint methods for solving global consistency and unconstrained
optimization problems. Section 5 discusses embedded constraint solvers and some implementation issues.
Section 6 concludes the paper.

2 Properties of Dynamic Systems

In this section, we review some basic concepts in metric spaces, dynamic systems and the relationship among
stability, attractors and Liapunov functions.

*Shell Canada Fellow, Canadian Institute for Advanced Research

To appear: Proc. First Workshop on Principles and Practice of Constraint
Programming, Newport, RI, April 1993.

2.1 Metric spaces

Let R be the set of all real numbers and R* denote the set of all nonnegative real numbers. A metric on a
set X is a function d : X x X — R* U {oo} which satisfies the following axioms for all z,y,z € X:

L d(z,y) = d(y, z).
2. d(z,y) +d(y,2) > d(a, 2).
3. d(z,y)=0if z = y.

A metric space is a pair (X,d) where X is a set and d is a metric on X. In a metric space, d(z,y) is called
“the distance between z and y”. Given a metric space, we can define the distance between a point and a set
of points as: d(z,X"*) = inf;.cx- d(z,z*).

For any point z* € X and € > 0, if {z]|d(z,2z*) < €} D {z*}, we call this set the e-neighborhood of
z*, denoted N*(z*). Similarly, for any subset X* C X, if {z|d(z,X*) < €} D X*, we call this set the
e-neighborhood of X*, denoted N¢(X*).

Let 7 be a set of totally ordered time points which can be either discrete or continuous. A trace
v:T — X is a function from a set of time points to a set of values. We use V¥ to denote the set of all
traces from 7 to X. Given a metric space (X,d) and a trace v, a trace v approaches a value z* € X iff
lim¢— o d(v(t),z*) = 0; v approaches a set X* C X iff lim—o d(v(t), X*) = 0.

2.2 Dynamic systems

The term dynamic refers to phenomena that produce time-changing patterns, the characteristics of the
pattern at one time being interrelated with those at other times [10]. A process p : X — V¥ is a function
from a set of values X to a set of traces V.}‘ . Intuitively, p characterizes a set of traces which are solely
determined by their initial values. We use ¢,(z) to denote the set of values in the trace of p(z), i.e.
¢p(2) = {p()(t)|t € T}.

A point z* € X is an equilibrium (or fizpoint) of the process p iff Vt,p(z*)(t) = z*. An equilibrium z*
is stable [13] iff VN*(z*)IN%(z*)Vz € N®(z*)¢,(z) C N¢(z*).

A set X* C X is an attractor [19] of the process p iff IN¢(X*)Vz € N¢(X*) lim;—o d(p(z)(t), X*) = 0;
X* is an attractor in the large iff Vz € X lim,.oo d(p(2)(t), X*) = 0. If {z*} is an attractor (in the large)
and z* is a stable equilibrium, z* is called an asymptotically stable equilibrium (in the large).

2.3 Liapunov functions

Let X* C X and Q = N¢(X*) for some € > 0. A Liapunov function for X* and a processp: X —» V¥ isa
function V' : Q — R, satisfying:

1. Vz,2’ € Q,V(z) < V(') iff d(z, X*) < d(z', X*),
2. Vz € QVt,V(p(z)(t)) < V(=z).

The first condition states that V' has a local minimum at z* € X*. The second condition guarantees that
V moves downhill along any traces of p starting at = € Q. This definition is a simplified version of the one
given in [10]. The following two theorems are similar to those in [10].

Theorem 1 An equilibrium z* € X of a process p is stable if there ezists a Liapunov function V for {z*}
and p.

Proof: Let 2 be the domain of V, which is an ¢’-neighborhood of z* for some € > 0. Given an e-neighborhood
N¢(z") of z*, let 6 = min(¢,€’), we have a 6-neighborhood N®(z*) C Q, therefore, ¥z € N%(z*)d,(z) C
N¢(z*). O

Theorem 2 Suppose a process p satisfies the following condition: for any z* € X, if there is z such that
p(z) approaches z*, then z* is an equilibrium. A set of stable equilibria X* C X of the process p is an
attractor if there ezists a Liapunov function V for X* and p, such that V satisfies the following conditions:

1. V is continuous, i.e. d(z,2') — 0 implies |V (z) = V(z')| = 0.
2. Vz € QVt, V(p(z)(t)) < V(z) if z € X*.
Furthermore, if Q = X, X" is an attractor in the large.

Proof: For any z € , since V is continuous, limy_.co V(p(2)(t)) = V(limi—oo p()(t)) = V(z*). We can
prove that z* € X* since otherwise according to Condition 2, z* cannot be an equilibrium. If @ = X, X* is
an attractor in the large. O

3 Constraint Nets: A General Model of Dynamics

In this section, we first introduce Constraint Nets, a model for dynamic systems, then examine the relation-
ship between constraint nets and constraint satisfaction.

3.1 Constraint Nets

A constraint net is composed of transductions and locations. A transduction is any mapping from a tuple
of input traces to an output trace which is causal, viz. the output value at any time is determined by the
input values prior to or at that time. Transductions are mathematical models of transformational processes.

There are two elementary types of transductions for dynamic systems: transliterations and delays. A
transliteration fr is a pointwise extension of a function f over a time set 7. We use §(init) and J(init) to
denote a unit delay in a discrete system and an integration in a continuous system respectively with init as
the initial value.

A constraint net is a triple CN = (L¢,Td,Cn), where Lc is a set of locations, Td is a set of transduc-
tions, each of which is associated with a tuple of input ports and an output port, Cn is a set of directed
connections between locations and ports of transductions, with the following restriction: (1) there is at most
one connection pointing to each location, (2) each port of a transduction connects to a unique location and
(3) no location is isolated.

A location is an input if there is no connection pointing to it otherwise it is an output. A constraint net
is closed if it has no input location otherwise it is open. We use CN(I,0) to denote a module with a set of
input locations I and a set of output locations O as the interface.

The graphical representation of a constraint net is a bipartite directed graph where locations are rep-
resented by circles, transductions by boxes and connections by arcs, each from a port of a transduction to a
location or vice versa.

Semantically, each location | denotes a trace z and each transduction Fr corresponds to an equation
z = Fr(z1,...,Zn). A constraint net corresponds to a set of equations; its semantics is the least fixpoint of
the equation set [22].

In general, constraint nets can model hybrid dynamic systems, with components operating on different
time structures or triggered by events. In this paper, we focus on only two types of constraint nets: discrete
transition systems and continuous integration systems, corresponding respectively to two different types of
constraint solvers.

3.2 Constraint solvers

An output location is a state location if it is an output of a unit delay or an integration. A state of a
constraint net is a mapping from the set of state locations to a set of values.

A constraint solver can be regarded as a special kind of constraint net which is closed and state-
determined, i.e. a state trace is determined by its initial state. A constraint solver CS defines a process
p: S — V§ where § is a set of states and V7 is a set of state traces. A (stable) equilibrium of p is called a
(stable) equilibrium of C'S; an attractor of p is called an attractor of CS.

CS solves C iff (1) every solution of C is a stable equilibrium of CS and (2) the solution set of Cisan
attractor of CS; CS solves C globally iff, in addition, the solution set of C is an attractor in the large.

Lemma 1 If CS solves C globally then every equilibrium of CS is a solution of C.
Proof: Trivial. O

We discuss here two basic types of constraint solvers: state transition systems for discrete cases and
state integration systems for continuous cases. A state transition system is a pair (S, f) where S is the set
of states and f : § — § is the state transition function. A state transition system can be represented by a
constraint net with a transliteration fr and a unit delay 6(so) where sy € S is an initial state (Fig. 1). The
solution of this net is an infinite sequence p(so¢) = 30, f(80)... f™(50)....

Figure 1: A constraint net representing (S, f)

Clearly, a state s* € S is an equilibrium of a state transition system (S, f) iff s* = f(s*).

Lemma 2 Let (S,d) be a metric space. An equilibrium s* in a state transition system is stable if 30 =
N¢(s*), Vs € Q,d(f(s), f(s*)) < d(s,5*). Moreover, s* is asymptotically stable if 3Q, Vs € ,d(f(s), f(5*)) <
kd(s,s*) for 0<k<1. IfQ =S5, s* is an asymptotically stable equilibrium in the large.

Proof: Let V(s) = d(s,s"). It is easy to see that V is a Liapunov function for s* and (S, f). O
Integration is a basic transduction on continuous time structures. A state integration system is a
differential equation % = f(s)! which can be represented by a constraint net with a transliteration f; and

an integration [(so) where s € S is an initial state (Fig. 2).

Ir @" j o) @

Figure 2: A constraint net representing % = f(s)

Clearly, a state 8™ € S is an equilibrium of a state integration system %% = f(s) iff f(s*)=0.

Lemma 3 An equilibrium s* in a state integration system is stable if f is continuous at s* and s* is @
local minimum of — [f(s)ds. Moreover, s* is asymptotically stable if st is the unique minimum in its
neighborhood. If there is no other equilibrium and s* is the global minimal point, s* is an asymptotically
stable equilibrium in the large.

Proof: Let V(s) = — [f(s)ds. 1t is easy to check that (1) ¥ < 0 and (2) since s* is a local minimum of
V, there is a neighborhood of s* such that V(s) < V(s') iff d(s,s*) < d(s', s*). Therefore V is a Liapunov
function for s* and 4 = f(s). O

4 Properties of Constraint Methods

In this section, we examine various constraint methods and their properties. In particular, we discuss two
types of constraint satisfaction problems, namely, global consistency and unconstrained optimization, for
four classes of relations: relations on finite domains, linear, convex and nonlinear relations in n-dimensional
Euclidean space (R",dp), where dn(z,y) = |z — y| = /(71 = 41)2 + -..(Tn — ¥n)2

Global consistency corresponds to solving hard constraints and unconstrained optimization corresponds
to solving soft constraints. A problem of the first kind can be translated into one of the second by introducing
an energy function representing the degree of global consistency.

11f s is a tuple, -5{- = f(s) represents a set of equations.

4.1 Unconstrained optimization

The problem of unconstrained optimization is to minimize an energy function £ :R"™ — R. Here we first
discuss two methods for this problem: the gradient method (GM) [16] and Newton’s method (NM) [19], and
then study the schema model (SM) for minimizing an energy function £ : [0,1]" — R.

4.1.1 Gradient method

The gradient method is based on the gradient descent algorithm, where state variables slide downhill in the
opposite direction of the gradient. Formally, if the function to be minimized is £(z) where z = (Z1y.eeyZn)s
then at any point, the vector that points towards the direction of maximum increase of £ is the gradient of
£. Therefore, the following gradient descent equations model the gradient method:

TN)
dt — 'oz;’
Let X* = {z"|z" is a true local minimum of £} and Y* = {z*|z* is a global minimum of £}. Let GM

be a constraint net representing the gradient descent equations (1). The following theorem specifies the
conditions under which GM solves the problems X* and Y.

ki > 0. (1)

Theorem 3 GM solves X* if g—i is continuous at every z* € X*. GM solves Y* if, in addition, £ is bounded
from below. GM solves Y* globally if, in addition, £ is convez’.

Proof: According to Lemma 3 every solution is a stable equilibrium. According to Theorem 2, by letting £
be a Liapunov function, we can prove that X* is an attractor. If £ is convex, Y* contains all of the equilibria,
therefore, the set of global minima is the attractor in the large. O

4.1.2 Newton’s method

Newton’s method is to minimize a second-order approximation of the given energy function, at each iterative
step. Let A€ = % and J be the Jacobian of AE. At each step with current point z(¥), Newton’s method is
to minimize the function:

£4(2) = E(®) + AET (20 (z — 2®) + %(z — &) J(a®)(z — z¥).

Let %‘;A = 0, we have:
Ag(z(")) + J(z("))(z - z(")) =0.

The solution of the above equation becomes the next point, i.e.
*+D) = gk) _ J-1(z()AE.

Newton’s method defines a state transition system (R", f) where f(z) =z — J~1(z)A&(z).
Let NM be the constraint net representing Newton’s method. The following theorem specifies the
conditions under which NM solves the problem X* and Y™.

Theorem 4 NM solves X* if |[J(z*)| # 0 at every z* € X*, i.e. € is strictly convex at z*. NM solves Y'*
if, in addition, £ is bounded from below. NM solves Y* globally if, in addition, £ is convez.

Proof: First, we prove that z* = f(z*) and |J(z*)| # 0 implies z* is asymptotically stable. Let R be the
Jacobian of f. It is easy to check that |R(z*)| = 0. There exists a neighborhood of z*, N¢(z*), for any
z € N¢(z*), |f(z) = f(z*)| < k|z - z*| for 0 < k < 1. According to Lemma 2, z* is asymptotically stable.
If £ is convex, there is no other equilibrium, so that z* is asymptotically stable in the large. O

Here we assume that the Jacobian and its inverse are obtained off-line. Newton’s method can also be
used to solve a set of nonlinear equations g(z) = 0 by replacing AE with g.

2This excludes flat maximum and saddle surfaces.

3 A function f is convex iff for any A € (0,1), f(Az +(1 = A)y) < Af(z) + (1 = A)f(y); it is strictly convex iff the inequality is
strict. Obviously, a strictly convex function has a unique minimal point. Linear functions are convex, but not strictly convex.
A quadratic function 2T Mz + cTz is convex if M is semi-positive definite; it is strictly convex if M is positive definite.

4.1.3 Schema model

The schema model has been used for finite constraint satisfaction in the PDP framework [18]. Basically, there
is a set of units, each can be on or off; constraints between units are represented by weights on connections.
The energy is typically a quadratic function in the following form:

&(a) = —(Zi jwijaia; + ibia;) = —(aTWa + bTa)

where a; € [0, 1] indicates the activation value and b; specifies the bias for unit i, w;; represents the constraint
between two units 4 and j. w;; is positive if units i and j support each other, it is negative if the units are
against each other and it is zero if the units have no effect on each other.

There are various methods for solving this problem. The schema model [18] provides the simpliest
discrete relaxation method. Let n;(a) = a%f? = —X;wjja; — b;. The schema model defines a state transition
system ([0, 1], f) where f = (f1,... fa) With fi(a) = a; — ni(a)a; if ni(a) > 0 and fi(a) = a; — ni(a)(1 - a;)
otherwise. In other words, fi(a) = (1 — [n;(a)|)a; — min(0, n;(a)).

Theorem 5 Let SM be a constraint net representing the schema model with |ni(a)| < 1 for any ¢ and a.
SM solves the set of minima of £, denoted A*.

Proof: Let a**1) denote f(a(®). First, because |ni(a)| < 1, a®) € [0,1]” implies a*+1) € [0,1]". Therefore
[is well defined. Second, for each minimum a* of £, and for any i, either (1) n;(a*) = 0 or (2) n;(a*) > 0
and af = 0 or (3) n;(a*) < 0 and a} = 1. Therefore a* is an equilibrium. Now we prove that a* is stable.
Let N¢(a*) be a neighborhood such that Ya € N¢(a*) and for any i if n;(a*) # 0, then n;(a) and n;(a*) have
the same sign otherwise if n;(a) > 0, then a; > a] otherwise a; < a}. Such a neighborhood exists because
n; is continuous. Considering |f;(a) — a}|, there are four cases.

1. ni(a*) > 0: In this case, a} = 0 and |fi(a) — a}| = | fi(a)] = |1 — ni(a)| x Jai| £ |a; - a3

2. ni(a*) < 0: In this case, a} =1 and |fi(a) — a}| = | fi(a) = 1| = |1 + ni(a)| x |a; - 1| < |a; — a?|.

3. ni(a*) = 0 and n;(a) 2 0: |fi(a) — a}| = |(1 - ni(a))a; — a}| = |a; — a} — ni(a)a;| £ |a; — a?].

4. ni(a*) = 0 and ni(a) < 0: |fi(a) - af| = [(1+ni(a))ai — ni(a) - a}| = lai — o] —ni(a)(1 - as)| < |a;—aj].

Therefore Va € N¢(a*),|fi(a) — a| < |a; — a}| and |f(a) — a*| £ |a — a*|. According to Lemma 2, a* is
stable. Furthermore, let V'(a) = |a — A*| be defined on a neighborhood of A*, V is a Liapunov function for
A* and SM. According to Theorem 2, A* is an attractor. O

4.2 Global consistency

Unconstrained optimization methods can also be used to solve a set of equations g;(x) = 0, = 1..n, by letting
&g(z) = Ti=1.nwig?(z) where w; > 0 and T;w; = 1. If a constraint solver C'S solves min Ey(z), CS solves
g(z) = 0. Inequality constraints can be transformed into equality constraints. There are two approaches.
Let gi(z) < 0 be an inequality constraint, the equivalent equality constraint is (i) maz(0, gi(z)) = 0 or (i)
gi(z) + 22 = 0 where z is introduced as an extra variable. Similarly, the schema model can be used to solve
a set of constraints with finite domains, by assigning each possible value a unit and each constraint between
two values a weight.

However, in many cases it is more efficient to solve a set of (in)equality constraints directly. Moreover,
a method for solving a set of equality constraints can also be used to solve an unconstrainted optimization
problem, since z* is a local extremum of £ implies g—i(:c‘) = 0. Similarly, the problem of finite domain
constraint satisfaction can be solved directly on constraint nets.

Here we first discuss the projection method (PM) for solving (in)equality constraints, and then study
the method for solving global consistency of finite domain constraints (FM).

4.2.1 Projection method

A projection of a point = to a set R in a metric space (X, d) is a point Pr(z) € R, such that d(z, Pr(z)) =
d(z,R). Projections in the n-dimensional Euclidean space (R",d,) share the following properties.

Lemma 4 [8] Let R C R" be closed and convez®. The projection Pr(z) of z to R exists and is unique for
every z, and (z — Pr(z))T(y — Pr(z)) <0 for any y € R.

Suppose we are given a system of convex and closed sets, X; for i = 1..m. The problem is to find z* €
NiX;. Let P(z) = Px,(z) be a projection of z to a least satisfied set Xy, i.e. d(z,X)) = max; d(z, X). The
projection method [8] for this problem defines a state transition system (R", f) where f(z) = z+A(P(z) - z)
for0<A<2.

The following theorem is derived from a similar one in [8], however, the proof given here is simplified
by the use of Liapunov functions.

Theorem 6 Let PM be a constraint net representing the projection method. PM solves X* = N;X; globally
if all the X;’s are convexz.

Proof: First of all, it is easy to see that if z* is a solution, then z* = f(z*), i.e. 2" is an equilibrium.
Moreover, we can prove that | f(z) — z*| < |z — z*| for any z as follows.

|f(z) - =*[?

|z + M(P(z) - z) - =" [*

|z — 2*|? + A?|P(z) — 2|2 + 2\(z - =*)T(P(z) — x)

|z = 2% + (A2 = 2X)|P(z) — z|* + 2A(P(z) —)T (P(z) - z*)
|z = "> = A(2 = A)|P(z) — z[* according to Lemma 4

|z —z*> since 0 < A < 2.

IANIA

According to Lemma 2, z* is stable.

Then, we can prove that X* is an attractor in the large. Let V(z) = |z — X*| on R". V(z) is a Liapunov
function on R" since V(f(z)) < V(z) for-any z. Moreover V(f(z)) < V(z) for any z ¢ X" since for any
z* € X* and z € X*, |f(z) = *| < |z — z*|. In addition, we can prove that the process defined by PM
satisfies the condition in Theorem 2, since limp—co 2" = z* implies limp—oo |z"+! — 2"| = 0. Therefore
limp—oo |P(z") — 2"| = 0 and P(z*) = z*, so that z* is an equilibrium. According to Theorem 2, X* is an
attractor in the large. O

The projection method can be used to solve a set of inequality constraints, i.e. X; = {z|gi(z) < 0} for
convex function g;. Linear functions are convex. Therefore the projection method can be applied to a set of
linear inequalities Az < b, where = = (z1,...,Za) € R". Let A; be the ith row of A. The projection of a
point z to a half space A;z — b; < 0 is defined as:

n_J = if Az —-5; <0
Pi(z) = { z ~ cAT otherwise

where ¢ = (Aiz — b;)/|AT|?. This reduces to the method described in [1]. Without any modification, this
method can be also applied to a set of linear equalities, by simply replacing each linear equality gi(z)=0
with two linear inequalities: g;(z) < 0 and —gi(z) < 0.

There are various ways to modify this method for faster convergence. For instance, (3] gives a simultane-
ous projection method in which f(z) = z+ AZ;eswi(Pi(z) —z) where I is an index set of violated constraints,
w; > 0and T;esw; = 1. [21] gives a method in which f(z) = z+A(Ps(z)—z) where S = {z|Zicswigi(z) < 0}.
Furthermore, for a large set of inequalities, the problem can be decomposed into a set of K subproblems
with fi corresponding to the transition function of the kth subproblem. The whole problem can be solved
by combining the results of {f1,...,fx}.

4A get R in n-dimensional Euclidean space is convex iff for any A € (0,1),z,y € R implies Az 4+ (1 — A)y € R. Clearly if g is
a convex function, {z|g(z) < 0} is a convex set.

4.2.2 Finite constraint satisfaction

Many problems can be formalized as finite constraint satisfaction problems (FCSPs), which can be repre-
sented by constraint networks [24]. Formally, a constraint network C is a quadruple (V, dom, A, con) where

e V is a set of variables, {v1,vs,...,un},
e associated with each variable v; is a finite domain d; = dom(v;),
o A is a set of arcs, {a1,4a3,...,a,},

e associated with each arc g; is a constraint con(a;) = r;(R;) where R; C V is a relation scheme and r;
is a set of relation tuples on R;.

The solution set for the constraint network C is the join of all the relations, sol(C) =r; M... M r,.

An FCSP can be solved using the schema model (SM) by assigning each possible value in the finite
domain of a variable a unit. The units of two values from the same variable are against each other; the units
of two values from different variables support each other if they are consistent. However, SM does not solve
an FCSP globally.

An FCSP can be solved directly using various methods [4, 6, 11, 12, 14]. Let Scheme(C) = {Ry,...,Rn}
be the scheme of a constraint network C. The solution of a constraint network C is a network C’, with
30l(C) = s0l(C"), Scheme(C) = Scheme(C"), and r! = I g,(sol(C')) where IIg, is a projection operator.
Such a solution network is called a minimal network [14]. Here we present a relaxation method (FM) which
finds the solution network of a constraint network with an acyclic scheme. This kind of method has been
studied by many researchers, for instance, [7, 17, 24]. We examine the property of the method within the
framework of dynamic systems.

Let C be the set of constraint networks with the same scheme and solution set. We define a state
transition system (C, f) where f = {fi}a,ea With fi(r;) = Ngjirinr,z0y TR (ri X 75).

Theorem 7 Let FM be a constraint net representing a state transition system (C, f). FM finds the solution
network globally in C if the scheme of C s acyclic.

Proof: First of all, it is clear that a solution network C* is an equilibrium of the state transition system.
Now let us define a metric on the set C. Given a relation scheme R, the distance between two relation tuples
can be defined as dg(ry,72) = |(r1 — r2) U (r2 — r1)| where |r| denotes the number of relation tuples. The

distance between two constraint networks in C can be defined as d(C},C;) = \/ Zscheme(c)8%(r1,72). Let

us define a function L on C as: L(C) = \/Tscheme(c)|r[*- L is a Liapunov function for the solution network
C* and (C, f) since (1) L(C1) < L(C,) iff d(C,,C*) < d(C,,C*) and (2) L(f(C)) < L(C) for any C € C.
Therefore C* is a stable equilibrium. Finally, we can prove that if the scheme of C is acyclic, C* is an
asymptotically stable equilibrium. For an acyclic network, an equilibrium implies a minimal network [24]
and clearly if C # C*, L(f(C)) < L(C). According to Theorem 2, C* is asymptotically stable.O

5 Embedded Constraint Solvers and Implementation Issues

In this section, we consider two variations of constraint solvers. The first corresponds to open constraint
nets, for designing embedded control systems. The second corresponds to constraint nets with latency.

5.1 Embedded constraint solvers

One of the important applications of constraint solvers is the design of robot control systems [15]. There
are two kinds of embedded constraint solvers for this application. First, a constraint solver is coupled to
a dynamic environment. Second, a constraint solver is coupled to the plant of a robot. In both cases, the
embedded constraint solver is part of the robot controller. The combination of these two embeddings will
occur in real applications.

An embedded constraint solver coupled to an environment (resp. a plant) is an open constraint net
CN(I,0), where the set of input locations I act as sensors of the environment (resp. the plant). Constraints

are relations on input and output values. A constraint net is an embedded constraint solver for the set
of constraints C and the environment (resp. the plant) iff the composition of the constraint net and the
environment (resp. the plant) solves C.

Consider the case of designing a tracking system S which chases a target T. Let z be the position of
S and z4 be the position of T, the constraint to be satisfied is |z — z4| = 0. Suppose we design a tracking
system with the following law: %f— = —k(z — z4) where z4 is an input trace. However, this system is not
an embedded constraint solver for |z — z4] = 0 if |4&¢| > 0. A correct design is 4 = 424 _ k(z — z4).
To see why this is the right design, we define a Liapunov function V(z,z4) = |z — za|* and observe that
%’- =(z— zd)(% - d—:{) < 0. In reality, both z4 and %‘ can be inaccurate. However, the system is robust

with respect to the inaccuracy.

5.2 Implementation issues

Constraint solvers (or embedded constraint solvers) can be implemented as analog or digital circuits, or as
programs in multiprocessor environments. For a discrete constraint solver, the efficiency can be characterized
by the convergence rate of the method and the computation cost of the transition function. Constraint nets
are inherently parallel, while sequential computation can be considered as a special case. Clearly, for discrete
constraint solvers, except those embedded in dynamic environments, the computation time will not affect
the dynamic behaviors.

However, for a continuous constraint solver, latencies in the circuit may change the dynamic behavior
of the constraint solver totally. Consider a simple example: %f— = —kz with k > 0 solves z = 0 globally.
However, if there is a latency & in the wires, the actual equation becomes % = —kz(t — 6). In this case,
z = 0 is still an equilibrium, but it may not be an asymptotically stable equilibrium. In fact, if bk > 2, it
is unstable at z = 0. Therefore, it is important at the design stage to model the possible latencies and to
choose the right value for k.

6 Conclusion

We have presented a unitary model of constraint satisfaction as a dynamic process. Various constraint
methods and their dynamic properties have been studied, and their applications to control system design are
examined. The Constraint Net model serves as a useful abstract target machine for constraint programming
languages, providing both semantics and pragmatics.

Acknowledgements: We wish to thank Uri Ascher, Peter Lawrence, Dinesh Pai, Nick Pippenger and
Runping Qi for valuable discussions and suggestions. This research was supported by the Natural Sciences
and Engineering Research Council and the Institute for Robotics and Intelligent Systems.

References

[1) S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6:382-392,
1954.

[2] A. Aiba, K. Sakai, Y. Sato, and D.J. Hawley. Constraint logic programming language cal. In Proceedings
of the International Conference on Fifth Generation Computer Systems, pages 263 —276, 1988.

[3] Y. Censor and T. Elfving. New method for linear inequalities. Linear Algebra and Its Applications,
42:199-211, 1982.

[4] R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages
285 — 293. Wiley, N.Y., 1992.

5In practice, ¢ — 4 would be sensed.

[5] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The constraint
logic programming language CHIP. In Proceedings of the International Conference on Fifth Generation
Computer Systems, pages 693 — 702, 1988,

[6] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proceeding of
AAAIL90, 1990.

[7] E. C. Freuder. Completable representations of constraint satisfaction problems. In KR-91, pages 186 —
195, 1991.

(8] L.G. Gubin, B.T. Polyak, and E.V. Raik. The method of projections for finding the common point of
convex sets. U.S.5.R. Computational Mathematics and Mathematical Physics, pages 1-24, 1967.

[9] J. Jaffar and J.L. Lassez. Constraint logic programming. In ACM Principles of Programming Languages,
pages 111 — 119, 1987,

(10} D.G. Luenberger. Introduction to Dynamic Systems: Theory, Models and Applications. John Wiley &
Sons, 1979.

[11] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelli-
gence, pages 276 — 285. Wiley, N.Y., 1992.

(12] A.K. Mackworth. The logic of constraint satisfaction. Artificial Intelligence, 58:3-20, 1992.

[13] M. D. Mesarovic and Y. Takahara. General Systems Theory: Mathematical Foundations. Academic
Press, 1975.

[14] U. Montanari. Networks of constraints: Fundamental properties and applications to picture processing.
Information Science, 7:95-132, 1974,

[15] D. K. Pai. Least constraint: A framework for the control of complex mechanical systems. In Proceedings
of American Control Conference, pages 426 — 432, Boston, 1991.

[16] J. Platt. Constraint methods for neural networks and computer graphics. Technical Report Caltech-
CS-TR-89-07, Department of Computer Science, California Institute of Technology, 1989.

[17] F. Rossi and U. Montanari. Exact solution in linear time of networks of constraints using perfect
relaxation. In Proceedings First Int. Principles of Knowledge Representation and Reasoning, Toronto,
Ontario, Canada, pages 394-399, May 1989.

(18] D. E. Rumelhart and J. L. McClelland, editors. Parailel Distributed Processing — Exploration in the
Microstructure of Cognition. MIT Press, 1986.

(19} J. T. Sandfur. Discrete Dynamical Systems: Theory and Applications. Clarendon Press, 1990.

(20] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint pro-
gramming. Technical Report SSL-90-86, Palo Alto Research Center, 1990.

[21] K. Yang and K.G. Murty. New iterative methods for linear inequalities. Unpublished.

[22] Y. Zhang and A. K. Mackworth. Constraint nets: A semantic model of real-time embedded systems.
Technical Report 92-10, Department of Computer Science, University of British Columbia, 1992.

(23] Y. Zhang and A. K. Mackworth. Will the robot do the right thing? Technical Report 92-31, Department
of Computer Science, University of British Columbia, 1992.

[24] Y. Zhang and A. K. Mackworth. Parallel and distributed constraint satisfaction: Complexity, algo-
rithms and experiments. In Laveen N. Kanal, editor, Parallel Processing for Artificial Intelligence.
Elsevier/North Holland, 1993. to appear.

