Constraint Nets: A Unitary Model for Hybrid Concurrent Systems

Ying Zhang and Alan K. Mackworth

Department of Computer Science
University of British Columbia
Vancouver, B.C., Canada V6T 172
E-mail: zhang@cs.ubc.ca

Phone: (604)822-3731, Fax: (604)822-5485

Abstract

Hybrid systems are systems consisting of a non-trivial mixture of discrete and continuous components,
such as a controller realized by a combination of digital and analog circuits, a robot composed of a
controller and a physical plant, or a robotic system consisting of a robot coupled to a continuous
environment.

Hybrid systems are more general than traditional real-time systems. The former can be composed
of continuous subsystems in addition to discrete or event-controlled modules. Some models of hybrid
computation have recently been proposed. In this paper, we present a different approach, taking a
hybrid system as a general dynamic system.

Our Constraint Net model (CN) is capable of modeling and analyzing dynamic behaviors in hybrid
systems. CN captures the most general structure of dynamic systems so that systems with discrete
as well as dense time, and asynchronous as well as synchronous event structures, can be modeled in
a unitary framework. CN provides multiple levels of abstraction so that a system can be developed
hierarchically; therefore, the dynamics of the environment as well as the dynamics of the plant and
the dynamics of computation and control can be modeled and then integrated. Since CN explicitly
represents locality, we can use it to explore true concurrency in distributed systems. With a rigorous
formalization in abstract algebra, CN provides a programming semantics for the design of hybrid
real-time embedded systems. CN also serves as a foundation for the specification and vel'iﬁcation of

robotic systems.

1 Motivation and Introduction

A robot is generally composed of a controller which is embedded in a physical plant. A robotic system
[22], the integration of a robot and its environment, is a typical hybrid system, consisting of a non-
trivial mixture of discrete and continuous components [11]. The overall behavior of a robot is emergent
from interactions among various components in the controller, the plant and the environment.

Much work has been done recently on introducing real-time concepts into formal models of con-
currency [6]. For example, Alur and Dill [2] developed the theory of timed automata to reason about
timed behaviors. Henzinger et al. [9] incorporated time into an interleaving model of concurrency in
which upper and lower bounds on time delay are associated with each transition. Various real-time
extensions of process algebras [16] have been proposed to model the relative speed of processes. The
Timed Petri Net model [4] was introduced to specify and verify real-time systems. Nome of these
models, however, are able to represent continuous change.

The traditional models for continuous (resp. synchronous discrete) dynamic systems are differential
(resp. difference) algebraic equations. However, most advanced control systems involve asynchronous
processes on computer networks in addition to analog or synchronous digital circuits. Differential
(difference) algebraic equations are not adequate for modeling these systems.

Some effort has been made recently to develop models for hybrid systems by generalizing timed
transition systems to phase transition systems [1L1, 15] in which computations consist of alternating
phases of discrete transitions and continuous activities. A hybrid system specification using 7 was
described in [20]. A duration calculus based on continuous time was developed [7] in which inte-
grators can be applied to predicates over a time interval. The use of weakest-precondition predicate
transformers in the derivation of sequential, process-control software was discussed in [13].

Our approach to developing a model for hybrid systems is based on the following arguments.
Instead of adding a model of time onto an existing model of concurrency, a model of dynamics should
be developed in the first place [17]. Instead of fixing a model with particular data types, a model of
dynamics should support abstract time structures and abstract data types. Using this approach, we
have developed Constraint Nets (CN), a unitary model for hybrid dynamic systems.

The major influences on the Constraint Net model are Ashcroft’s Operator Net model [3] and

Lavignon and Shoham’s Temporal Automaton model [10].

The Operator Net model, abstracted from Lucid [19], is defined on continuous algebras using
fixpoint theory. The most attractive feature of this model is its independence of any particular algebra.
Given a continuous algebra which specifies data types and basic operations, a sequence (continuous)
algebra is obtained on which an operator net can be defined. LUSTRE [5], a development based on
Lucid, is a real-time programming language, in which sequences are interpreted as time steps. In
addition, LUSTRE introduces clocks, so that any expression is evaluated at its clock’s sampling rate.

The Temporal Automaton model is a step towards modeling causal functions in multiple time
domains. The Temporal Automaton model provides explicit representation of process time, symmetric
representation of a machine and its environment, and aggregation of individual machines to form a
machine at a coarser level of granularity. However, there remain untackled problems in modeling
continuous change and event control. .

As in the Operator Net model, CN is defined on continuous algebras using fixpoint theory. As does
LUSTRE, CN introduces reference time structures and clocks, but the reference time of CN can be
dense and the clocks of CN denote events [18]. As in the Temporal Automaton model, transductions
are introduced as an abstraction of causal functions, but our definition of transductions is generalized to
include continuous activities and event-driven transitions. In this definition, a transduction is a trans-
formational process from a tuple of input traces to an output trace. Furthermore, environments and
machines are represented in a unitary framework. As do both operator nets and temporal automata,
constraint nets provide composite structure and multiple levels of abstraction. Unlike both operator
nets and temporal automata, constraint nets introduce ‘locations’ so that distributed memories are
explicitly modeled. In contrast to most concurrency models which are inherently non-deterministic,
CN is a deterministic model; non-determinism can be modeled by constraint nets with hidden input
locations.

In summary, the major contributions of the Constraint Net model are: (1) by introducing clocks,
CN models various time structures and coordination among components with different time structures;
(2) developed on abstract algebras, CN supports abstract data types and functions; (3) with a rigorous
formalization, CN provides a programming semantics for the design of hybrid real-time embedded
systems; (4) by symmetrically modeling plants and environments as well as control, CN serves as a

foundation for the specification and verification of robotic systems [21].

The rest of the paper is organized as follows. Section 2 presents the syntax of constraint nets.
Section 3 introduces the algebraic formalization of time and dynamics. Section 4 gives the semantics
of constraint nets using fixpoint theory of continuous algebras. Section 5 illustrates CN via two
examples: the cat and mouse problem and a car-like maze traveler. Section 6 concludes this paper

and proposes future research directions.

2 The Structure of Constraint Nets

In this section, we present the syntax of constraint nets and characterize the composite structure and

modularity of the model.

2.1 Syntax

A constraint net is a triple CN = (Le, T'd, Cn), where Le is a set of locations, each of which is associated
with a sort; T'd is a set of transductions, each of which is associated with a tuple of input ports and
an output port, of certain sorts; ('n is a set of directed connections between locations and ports of
transductions of the same sort. Topologically, a constraint net is a bipartite graph where locations are
represented by circles, transductions are represented by boxes and connections are represented by arcs,
each from a port of a transduction to a location or vice versa, with the restriction that (1) there is at
most one connection pointing to each location, (2) each port of a transduction connects to a unique
location and (3) no location is isolated. A location is an input iff there is no connection pointing to it
otherwise it is an output. For a constraint net C'N, the set of input locations is denoted by I(C'N), the
set of output locations is denoted by O(C'N). A constraint net is closed iff there are no input locations
otherwise it is open. For example, Figure 1, where fr is a pointwise extension of a function f and
6 is a unit delay, is an open net representing a state transducer: s(0) = g, s(n+ 1) = f(i(n), s(n)).

Figure 2 is a closed net representing a differential equation § = f(s).

2.2 Modules

A module is a triple C N(I,0) where C'N is a constraint net, I C I(C'N) and O C O(C'N) are subsets
of the input and output locations of C'N respectively; I and O define the interface of the module.

A module CN(I,0)is open iff I # () otherwise it is closed. A complex module can be hierarchically

O 00

Figure 1: The constraint net representing a state transducer

r __"@_’J{S”] @

Figure 2: The constraint net representing é = f(s)

constructed from simple ones.

There are several operations that can be applied to modules to obtain a new module. The first is
composition, which combines two modules into one whose interface is the union of the two interfaces.
The second is coalescence, which coalesces a group of locations with the same sort in the interface of
a module into an individual location, with the restriction that at most one of the coalesced locations
is an output location. The third is hiding, which deletes a set of locations from the interface.

In addition, we define three combined operations using the basic operations. The first is cascade
connection which connects two modules in serial. The second is parallel connection which connects
two modules in parallel. The third is feedback connection which connects an output of the module to

an input of its own [14].

3 An Algebraic Theory of Dynamics

In this section, we define the semantics of locations and transductions of constraint nets, with an

algebraic formalization of time structures, traces and transductions.

3.1 Time structures

Generalizing [10], we define a time structure as a metric space [12] (7, d) where (7, <7) with L7 as the
least element is a total order, and d : 7 x 7 — R7T is a metric, such that Vto <7 t1 <7 t2,d(to,t2) =

d(to,t1) + d(t1,t3). Given a time structure (7, d), the measurement function m : T — R is defined

as m(t) =ges d(L7,t). Obviously m(L7) = 0 and m(t) < m(ty) iff 1 <71 5.

The precision of a time structure (7', d) is the minimum distance between any two time points, i.e.
P(T) =des inf{d(ts, 02)|Vt1 # 12 € T}

A time structure 7" is discrete iff p(T) > 0 otherwise it is dense. A time structure 7 is finite iff |T| is

finite. Let A be the set of natural numbers. Some examples of time structures are defined as follows.
1. T ={nJn € N,0 <n <5}, m(n)=mnis a finite time structure.
2. T = {n|n € N}, m(n) = n is a discrete time structure.
3. T={rlre R*,0 <» < 1},m(r)=r is a dense time structure.

4. T = {n|n € N'},m(n) = =L is a dense time structure.

5. T = {L}U {n}nen,m(L) = 0,m(n) = 5 is a dense time structure.

A time structure (7,d) may be related to another time structure (7,,d,) by a reference time
mapping h where (1) h: T — 7, is strictly monotonic, i.e. t <7 ¢ implies h(t) <z, h(t') and (2) the
least clement is preserved, i.e. h(1l7) =L7.. 7, is a reference time of T, and 7T is a sampled time of
i

Generalizing [11], we define the time domain of a time structure (7,d) as the completion of 7,
T°°. T is an algebraic cpo with {[L7,t]|t € T} as the set of compact elements [8]. For example if
T =R+, T = {[0,1],[0,t)|t € RT} U {oo}. The need for this definition will be demonstrated later
in the definition of traces. Here, we define previous time functions using the time domain. Function

“pre” denotes the moment preceding the current time. Let pre: 7 — T U {0},
pre(t) =qep {U'|t € T,t' < t}.

For example if 7 = R*, pre(5) = [0,5). Furthermore, we can define the time previous to the current

time by an interval § > 0 as: —§ : 7 — 7°° U {0},
t— & =qep {t'|t' <7 t,d(t,t") > 6}.

Obviously ¢t — 0 = pre(t).

3.2 Traces

A wariable domain is a domain whose carrier set can be recursively defined as follows:
o a flat partial order is a variable domain;
e a product of variable domains is a variable domain.

A metric space (4,d) is defined for variable domain A. For any sequence (an) in A, if the limit does
not exist then lim,, oo @y, =4ef L4 When A is a flat partial order; lim 00 (al, ai) =des (lim a}L,lim df)
when A = A; X A, is a product.

A variable trace on a time structure (7, d) is a mapping from 7 to a variable domain A: v: T — 4;
it is deterministic iff Vt € 7, v(t) #L 4. For example if 7 = R* and A =R = {L}UR, v = At.sin(t)
is a deterministic variable trace, and v = At.Ce** where C, k € R is also a deterministic variable trace.

A variable trace v : 7 — A can be extended to the time domain v : 7 — A as follows. If t*° € T
is compact v(t°) =40 v(V7t>®). Otherwise let m* = sup{m(t)|t € 1>}, v(t®) =ges limy,(py_m= v(1).
For the previous example, sin(oo) = lim; e sin(t) =L, and if k < 0, C'eb® = lim;,eo Ceft = 0. A
variable trace v : 7 — A is nonintermittent iff v(t*°) =L 4 implies V#'®® D t*°,v(#'*°) =14 otherwise
it is intermittent.

An event trace is a nonintermittent variable trace with variable domain B = {L1,0,1}. An event
trace e : T — B generates a sampled time structure (7;,d) of (T,d) if e # At. L. Formally, 7. C T
is defined as: T, =qes {L7} U {t € Tle(t) #L,e(t) # e(pre(t))} if e # At. L and 7. =45 @ otherwise,

i.e., each left-discontinuous point of the event trace defines a time point (see Figure 3).

e(t)

Figure 3: An event trace: each dot depicts a time point

A variable trace can be transformed into another with a different time structure. Let 7, be a

reference time structure of 7 with the reference time mapping h. The sampled variable trace of

v : T, — A onto 7 is a variable trace v : 7 — A, v =45 At.w(R(t)). On the other hand, the

interpolated variable trace of v : 7 — A onto 7, is a variable trace 7: 7, — A,

I 1A if Vt' € T,t > M)
U =def Al v({t/|Mt") <7, t}) otherwise.

3.3 Transductions

A transduction is a mapping from a tuple of input traces to an output trace, Fg 7,7, : V%l X ... X
V%" — V%O where V%" is the set of variable traces with time structure 7; and variable domain Ai\,
which satisfies the causal relationship between its inputs and the output, i.e. if the inputs are the same
up to a certain time point, the outputs will be the same at that time. Formally, if 7, is a reference
time structure for all 7; with the reference mapping h;, then for any pair of input traces v, v', and

to € Tg: if ViVt;, hi(ti) <. hg(to) — U,‘(ti) e vf(ti) then
Fro 4, (015, 00)(t0) = P 3, 3 (V5 -, 0) (o)

In general, a transduction is a transformational process. For instance, a temporal integration is
a transduction, and any state transducer defines a transduction from input traces to state traces.
Clearly, transductions are closed under composition.

Let 7, be a reference time structure of 7. If Fr is a transduction whose variables have the same time
structure, the interpolated transduction from 7 to 7, is defined as Fr(vi,-..y0n) =def m
Similarly, the sampled transduction from 7, to 7 can be defined as E(vl, cony) =des Fr, (U1, ..., T).

There are two basic types of transductions: pointwise extensions and delays. Given f: A; X ... X

A, — Ao, a pointwise extension of f onto a time structure 7 is a transduction fr : Vi X...XV, — Vo:

fr(vi, ...y vn) =def At f(01(t), ..., vn(2)).

There are two types of delays: unit delays and transport delays. A unit delay is a transduction
from V? to V’T4. Formally, let init € A be the output value at the start time point, a unit delay in the

time structure 7 is:
init if pre(t) =10

Afe - _
62 (1nit)(v) =des /\t.{ v(pre(t)) otherwise.

A transport delay is a transduction from V% to V4. Formally, let init € A be the output value at the
start period of time, § > 0 be the time delay, a transport delay in the time structure 7 is:

A e B init ift—6=10
AT(8)(init)(v) S¢es Al { v(t — §) otherwise.

In addition to basic types of transductions which operate in a given time structure, an event-driven
transduction is a transduction with an extra input, an event trace; it operates at each event point
and the output value holds between two events. The additional event trace input of an event-driven
transduction is called the clock of the transduction. Formally, let &7 be the set of all event traces on
time structure 7, and Fr, : V,}e — V% be a transduction on the time structure 7, produced by an
event trace e. We define an event-driven transduction on time structure 7 as Ff : &7 X V% — V'(T)>

F&(e,v) =des Fr.(v). Various transductions can be defined for event synchronization [18].

3.4 Y-dynamics

Finally, with preliminaries established, we can characterize the domain structure for constraint nets.
We have defined time structures which are abstraction of time. Together with abstract data types, we
can define abstract dynamics.

Abstract data types can be defined by X-variable domains. Let £ = (9, F)) be a signature which
contains a distinguished nullary function symbol for each sort s, 2,. A X-variable domain is a triple
({As}ses,{SAs}seS,{fA}feﬂ where ({A;}ses, {<a.}ses) is a S-sorted variable domain, fA is con-
tinuous for each f € F and Q4 is L4, [8].

(iiven a Y-variable domain A and a time structure 7, a X-dynamics D(7, A) is a triple (V, <y, F)

where

o V={V&lesUEr where Vi< = {v|v: T — A,} is the set of variable traces and &7 is the set

of event traces with the reference time structure 7;

o <y= {gvés}ses U {<.} is the set of partial orders on variable traces, vi <,a. vy iff Vi €
T

T,v1(t) <a, v2(t) and e; <. ez iff VI € T,e1(t) <p ea(t);

o F=Fr U]:zf'— where Fr = {fqé}feFU {6'114'5(i"it)}ses,miteAs U {Aés((5)(i’llit)}35515>011'm't€‘45 is the
set of pointwise extensions, unit delays and transport delays, 75 = {F®|F € Fr} is the set of

event-driven transductions.

Theorem 3.1 Given a X-dynamics D(T, A) consisting of a triple (V, <y, F) then

(1) (V, <y) is a multi-sorted cpo (complete partial order), and (2) each transduction in F is continuous.

Proof: (Sketch) Variable dom{ﬁns are algebraic cpos. The set of all functions to a cpo is also a cpo.
The set of event traces is also a cpo. It is easy to check that f{l is continuous. Delays and event-driven

transductions are continuous given the properties of variable domains and event traces. O

4 The Semantics of Constraint Nets

In this section, we present a denotational semantics for constraint nets based on fixpoint theory.

4.1 Fixpoint semantics

A Z-dynamics D(T, A) = (V, <y, F) is the semantic domain of a constraint net CN = (Le¢,Td, C'n)
iff each location in Lc¢ with sort s denotes a variable trace v € Vé“; each transduction in 7'd is a
composition of transductions in F with at most one clock; each clock denotes an event trace e € £7.

Each connection relates an input/output port of a transduction with a location. Therefore, the
semantic representation of a constraint net is a set of equations, where each left-hand side is an
individual output location and each right-hand side is an expression composed of transductions and
locations: & = ﬁT(f, 6) where 0 is the tuple of output locations, 7 is the tuple of input locations and

Fr is the tuple of transductions.

Theorem 4.1 For any constraint net with a X-dynamics as its semantic domain, there is a least

fizpoint of 0 = F’}(Z, d).

Proof: (Sketch) Since each transduction is continuous, F’} is a continuous transduction from 12 X l-}o
to V,. According to fixpoint theory [8], there is a continuous transduction p.ff[: V; — V, which is
the least fixpoint of this equation. O

The semantics of a constraint net C'N is defined as: [CN] =4ef ,u.ﬁf where ,u.F'} VY, = V, s
the least fixpoint of the set of equations of CN. We write & = [('N]|(%) as the semantic equation of
CN. The semantics of a module C'N(I,0) is defined as: [CN(I,0)] =4es [[C'N][O] where F[0] is
the subset of tuples of F restricted to O.

10

For example, a state transducer (Figure 1) is composed of a pointwise extension of a state transition
function f and a unit delay. A state transducer defines a continuous transduction from V% to V? if
f:IxQ — @ is a continuous function and I and @ are variable domains. The semantic representation
of a state transducer is: v, = fr(v5,vs),vs = 6(S0)(vns) 1.e. vy = 8(s0)(fr(vi,vs)). The semantic
equation of the state transducer is: vy = (u.F)(v;) where F' = 6(so) o fr.

For a complex system with many components, the semantics of the whole system can be obtained
from the semantics of its components by deriving the least fixpoint of the set of semantic equations of

all the components.

4.2 Infinitesimal delays and differential equations

So far we have no definition for integration, the most important transduction for time structures
defined by real intervals. We can define integration by introducing infinitesimal transport delays. A
transport delay A(8)(init) is called infinitesimal iff § > 0 is an infinitesimal. The limiting behavior of
a variable trace v(§), where § is a tuple of infinitesimals, is defined as: v* =qey At.lims_ov(6)(%). Let
C'N be a closed net, i.e. [(CN) =10, [[CN][o],0€ O(C'N) be a variable trace, and é be the tuple of
infinitesimals in C' N. The limiting behavior of C'N is defined as: [[C'N*] =4es Ao.([C N][o])*.

Let © = ({r},{Q,+, x}) and X-dynamics be D(R*,R). For simplicity, we use 4 to denote its
pointwise extension +x+, —z to denote At.(—1) Xgr+ z, and y — ¢ to denote y + (—z) etc. Let
d(8)(v) =ges v — A(8)(0)(v), and ¢ = A(6)(init)(q) + A(6)(0)(u) x d(8)(v) be an open net with
infinitesimal delay §. Let int(6)(:init) be the least fixpoint of the net; it is a temporal integrator iff
v = At.t, the identity function. We will use [(init) to denote int(6)(init) with an infinitesimal 4.

For example let us investigate the semantics of the net in Figure 2 with f = As.(—s). Given

Y-dynamics D(RT,R), by starting with 3?.(6) = At. L, we have

sH(6) = int(6)(init)(s2(6)) = M. { it 1<

otherwise,
wnat ift<é
54(6) = int(6)(inat)(s}(8)) = M. Q init —init x § if 6 <t <26
1 otherwise,

11

it ift<é

it — init X 6 iféd<t<26
3’}‘*’1 (6) = int(&)(init)(sl}'(é)) = M. !
ingt x BE_(-1)MCpem if ké <t < (k4 1)6
L otherwise.

We have s¢(6) = \/{9’}(5)} The limiting behavior of the net is lims_oss(8)(t) = lims_ginit X

Sk (1) 6™ where k = [L], ie. s(t) = init x B2

t _ pos —t . . .
A e—m)! % o(=1)"4 = init X e7*, which is the solution

of § = —s. We should notice that in general the limiting behavior of a constraint net representing a
differential equation § = f(s) will correspond to its solution if f satisfies a Lipschitz condition [12].

Integrators are one of the basic types of transductions on time structures of real intervals.

5 Examples: Modeling in Constraint Nets

In this section, we demonstrate constraint net modeling using two examples. One is the cat and mouse

problem and the other is a car-like maze traveler.

5.1 The cat and mouse problem

The cat and mouse problem was proposed as a sample real-time pedagogical problem at the REX
workshop [11, 20]. The problem can be described as follows: at time 0, a mouse starts running from
a certain position on the floor in a straight line towards a hole in the wall, which is at a distance
X, from the initial position. The mouse rTuns at a constant velocity V,,. After a delay of é, a cat is
released at the same initial position and chases the mouse at velocity V. along the same path. Will
the cat catch the mouse?

The constraint net in Figure 4 models this problem. In this net transductions V,, and V, are
constant traces, representing the constant velocities of the mouse and the cat respectively. Assume the
hole is at position 0 and initial position of the mouse and the cat is —Xg. Function * is multiplication
and move : R x R — B is a function defined as: move =4e5 Atp@o.(Zm > 2o) A (25, < 0). That is,
the output value of move is 0 whenever the cat catches the mouse (z,, < z.) or the mouse reaches the
hole (z,, > 0). The set of equations of this net is: @y, = move(@m,xc) X Vin, To = move(oy,,) X v,

and v, = A(6)(0)V. with z,,(0) = z.(0) = —Xo.

12

\ —*@* _>®—> (-X0)
Ve —>@—> AB)O) —>®— - _}O f(-XO)

_() = move |
T

Figure 4: The constraint net for the cat-mouse problem

¢

v

(]

5.2 The car-like maze traveler

Suppose a maze is composed of separated T-shaped obstacles of bounded size placed in one of four
directions on an unbounded plane. A car-like robot with two touch sensors, the forward sensor SF
and the right-side sensor SR, is required to traverse the maze from west to east as shown in Figure

5. The robot can move forward and backward, and can make turns; however, its turns are limited by

~ o
h S A
e 5 _l— — o
SR
(@) (b)

Figure 5: (a) The car-like robot (b) Traveling through a maze

mechanical stops on the steering gear, which turns the front and back wheels symmetrically. Despite
these nonholonomic constraints, it can achieve any position and orientation on an unbounded plane.

The plant of the robot can be modeled by following equations:

& = vcos(d), § = wvsin(d), § = vtan(a)/L

13

where v is its velocity, # is its heading, L is its half-length and « is the current steering angle.
Figure 6 models the robotic system of this maze traveler, where the controller connects sensing
signals to motor commands. For example, when the forward sensor S'F is on, the robot is facing a

wall directly within some distance; when « is positive, the robot is turning left.

@ ©
CONTROL ROBOT
MAZE CIRCUIT BODY

® © &

Figure 6: The maze traveler robotic system

The controller of the maze traveler is a state transition system in Figure 7(a) where circles are
states with a double circle as the initial state, and arcs with label z/y indicate input z and output
y. In Figure 7(a), MF means “move forward” (a = 0), TL means “turn left” (e > 0) and TR means
“turn right” (a« < 0) !. For example, when the state of the robot is moving east and the forward
sensor is set to 1, it should turn left and the next state is moving north.

It is clear that we cannot set any fixed sampling rate for this transition system, since we don’t know
how long it takes to turn to the next heading. Rather, an event-driven transduction is appropriate.
There are three types of events: (1) 6 becomes Tk, (2) SF changes from 0 to 1 and (3) SR changes
from 1 to 0. The event “or” of these three events will be the output of the event generator EG to

trigger the state transition system T'D (Figure 7 (b)).

6 Conclusion and Future Work

We have presented the unitary Constraint Net model for hybrid concurrent systems based on algebraic

theory. We have been able to model robotic behaviors with constraint nets which are simulated by

'Note that this finite transition system works for T-shaped blocks; in general an infinite memory is needed for counting
the number of turns [1]. The velocity is set at a constant value of 1; in reality a PD controller would be used.

14

~1SF/MF SR A 1 SF/ MF SR/MF

. SR/\SF/TL ®' ™ "}*@
@ ©

>

TI1SR/TR 1 SR/TR

........................

@ ®)

Figure 7: (a) State transition graph (b) The controller

logical concurrent objects [22]. Related work on a real-time temporal logic for the specification and
verification of constraint nets was reported in [21]. We are now developing a visual programming,
simulation and verification environment, known as ALERT (A Laboratory for Embedded Real-Time

systems), based on the Constraint Net model.

References

[1] H. Abelson and A. A. diSessa. Turtle Geometry: The Computer as a Medium for Exploring
Mathematics. The MIT Press, 1981.

[2] R. Alur and D. Dill. The theory of timed automata. In J.W. deBakker, C. Huizing, W.P.
dePoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, number 600 in Lecture
Notes on Computer Science, pages 45 — 73. Springer-Verlag, 1991.

[3] E.A. Ashcroft. Dataflow and eduction: Data-driven and demand-driven distributed computation.
In J. W. deBakker, W.P. deRoever, and G. Rozenberg, editors, Current Trends in Concurrency,
number 224 in Lecture Notes on Computer Science. Springer-Verlag, 1986.

[4] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time
petri nets. IEEE Transactions on Software Engineering, 17(3), March 1991.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language for pro-
gramming synchronous systems. In ACM Proceeding of Principles of Programming Languages,
1987.

[6] J.W. deBakker, C. Huizing, W.P. dePoever, and G. Rozenberg, editors. Real-Time: Theory in
Practice. Number 600 in Lecture Notes on Computer Science. Springer-Verlag, 1991.

[7] M. R. Hansen and C. Zhou. Semantics and completeness of duration calculus. In J.W. deBakker,
C. Huizing, W.P. dePoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, number
600 in Lecture Notes on Computer Science, pages 209 — 225. Springer-Verlag, 1991.

[8] M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[9] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In J.W. deBakker, C. Huiz-
ing, W.P. dePoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, number 600 in
Lecture Notes on Computer Science, pages 226-251. Springer-Verlag, 1991.

[10] J. Lavignon and Y. Shoham. Temporal automata. Technical Report STAN-CS-90-1325, Robotics
Laboratory, Computer Science Department, Stanford University, Stanford, CA 94305, 1990.

[11] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. deBakker, C. Huizing,
W.P. dePoever, and G. Rozenberg, editors, Real- Time: Theory in Practice, number 600 in Lecture
Notes on Computer Science, pages 448 — 484. Springer-Verlag, 1991.

[12] E. G. Manes and M. A. Arbib. Algebraic Approaches to Program Semantics. Springer-Verlag,
1986.

[13] K. Marzullo, F.B. Schneider, and N. Budhiraja. Derivation of sequential, real-time, process-
control programs. In A. M. van Tilborg and G. M. Koob, editors, Foundations of Real-Time
Computing: Formal Specifications and Methods, pages 40 — 54. Kluwer Academic Publishers,
1991.

[14] M. D. Mesarovic and Y. Takahara. General Systems Theory: Mathematical Foundations. Aca-
demic Press, 1975.

[15] X. Nicollin and J. Sifakis. From atp to timed graphs and hybrid systems. In J.W. deBakker,
C. Huizing, W.P. dePoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, number
600 in Lecture Notes on Computer Science, pages 549 — 572. Springer-Verlag, 1991.

[16] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In J.W. deBakker,
C. Huizing, W.P. dePoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, number
600 in Lecture Notes on Computer Science, pages 526 — 548. Springer-Verlag, 1991.

[17] C.A. Petri. “Forgotten topics” of net theory. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Applications and Relationships to Other Models of Concurrency, number 255
in Lecture Notes on Computer Science, pages 500 — 514. Springer-Verlag, 1986.

[18] 1.E. Sutherland. Micropipeline. Communication of ACM, 32(6), June 1989.

[19] W.W. Wadge and E.A. Ashcroft. Lucid, the dataflow programming language. Academic Press,
1985.

[20] W. G. Wood. A specification of the cat and mouse problem. In J.W. deBakker, C. Huizing, W.P.
dePoever, and G. Rozenberg, editors, Real-Time: Theory in Practice, number 600 in Lecture
Notes on Computer Science, pages 676 — 686. Springer-Verlag, 1991.

[21] Y. Zhang and A. K. Mackworth. Will the robot do the right thing? Technical Report 92-31,
Department of Computer Science, University of British Columbia, 1992.

[22] Y. Zhang and A.K. Mackworth. Modeling behavioral dynamics in discrete robotic systems with
logical concurrent objects. In S.G. Tzafestas and J.C. Gentina, editors, Robotics and Flexible
Manufacturing Systems. Elsevier Science Publishers B.V., 1992.

16

