Semantics: General Idea

A semantics specifies the meaning of sentences in the language. An interpretation specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations

Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.
- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.
- π is a mapping that assigns to each *n*-ary predicate symbol a relation: a function from D^n into $\{TRUE, FALSE\}$.

Example Interpretation

Constants: phone, pencil, telephone.

Predicate Symbol: noisy (unary), left_of (binary).

- $D = \{ > , ? > , ! > \}.$
- $\phi(phone) = \mathbf{\hat{a}}$, $\phi(pencil) = \mathbf{\hat{a}}$, $\phi(telephone) = \mathbf{\hat{a}}$.
- $\pi(noisy)$: $\langle \mathcal{H} \rangle$ FALSE $\langle \mathcal{T} \rangle$ TRUE $\langle \mathcal{D} \rangle$ FALSE $\pi(left_of)$:

$\langle \sim, \sim \rangle$	FALSE	⟨≫,☎⟩	TRUE	$\langle \mathbf{pprox}, \mathbf{\S} \rangle$	TRUE
⟨☎,≫⟩	FALSE	$\langle \mathbf{\Delta}, \mathbf{\Delta} \rangle$	FALSE	$\langle \mathbf{a}, \mathfrak{D} \rangle$	TRUE
$\langle \mathfrak{D}, \mathfrak{S} \rangle$	FALSE	$\langle extstyle e$	FALSE	$\langle \mathfrak{D}, \mathfrak{D} \rangle$	FALSE

Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can't necessarily be stored in a computer.
- $\pi(p)$ specifies whether the relation denoted by the *n*-ary predicate symbol p is true or false for each *n*-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either TRUE or FALSE.

Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$. Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- true in interpretation I if $\pi(p)(t'_1,\ldots,t'_n)=\mathit{TRUE}$, where t_i denotes t'_i in interpretation I and
- false in interpretation I if $\pi(p)(t'_1,\ldots,t'_n)=\mathit{FALSE}$.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is false in interpretation I if h is false in I and each b_i is true in I, and is true in interpretation I otherwise.

Example Truths

In the interpretation given before:

```
noisy(phone)
                                                           true
noisy(telephone)
                                                           true
noisy(pencil)
                                                           false
left_of (phone, pencil)
                                                            true
                                                            false
left_of(phone, telephone)
noisy(pencil) \leftarrow left\_of(phone, telephone)
                                                            true
                                                            false
noisy(pencil) \leftarrow left\_of(phone, pencil)
noisy(phone) \leftarrow noisy(telephone) \land noisy(pencil)
                                                            true
```

Models and logical consequences (recall)

- A knowledge base, *KB*, is true in interpretation *I* if and only if every clause in *KB* is true in *I*.
- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

User's view of Semantics

- 1. Choose a task domain: intended interpretation.
- 2. Associate constants with individuals you want to name.
- 3. For each relation you want to represent, associate a predicate symbol in the language.
- 4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 5. Ask questions about the intended interpretation.
- 6. If $KB \models g$, then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Role of Semantics in an RRS

