Reinforcement Learning

What should an agent do given:
@ Prior knowledge possible states of the world
possible actions

@ Observations current state of world
immediate reward / punishment
@ Goal act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics
and model of reward not given.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 1

Reinforcement Learning Examples

@ Game - reward winning, punish losing
@ Dog - reward obedience, punish destructive behavior

@ Robot - reward task completion, punish dangerous
behavior

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 2

Experiences

@ We assume there is a sequence of experiences:
State, action, reward , state, action, reward,

@ At any time it must decide whether to
» explore to gain more knowledge

» exploit the knowledge it has already discovered

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 3

Why is reinforcement learning hard?

@ What actions are responsible for the reward may have
occurred a long time before the reward was received.

@ The long-term effect of an action of the robot depends on
what it will do in the future.

@ The explore-exploit dilemma: at each time should the
robot be greedy or inquisitive?

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 4

Reinforcement learning: main approaches

@ search through a space of policies (controllers)

@ learn a model consisting of state transition function

P(s'|a,s) and reward function R(s, a, s’); solve this an an
MDP.

@ learn Q*(s, a), use this to guide action.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 5

Temporal Differences

@ Suppose we have a sequence of values:
Vi, V2, V3, . ..

And want a running estimate of the average of the first k
values:
. V]. + e + Vk

k

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 6

Temporal Differences (cont)

@ When a new value v, arrives:
vi+ -+ v v

A, = p
KAk = vi+- -+ Vi1 + v
= (k—l)Akfl—FVk
k—1 1
A = P Ak—l"‘ZVk
Leta:%,then

A = (1 — Oé)Akfl + vy
= A1+ o(vk — Ak-1)
@ Often we use this update with « fixed.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 7

o ldea: store Q[State, Action|; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

@ Suppose the agent has an experience (s, a, r, s’)
@ This provides one piece of data to update Q[s, a|.
@ The experience (s, a, r,s’) provides the data point:

which can be used in the TD formula giving:

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 8

o ldea: store Q[State, Action|; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

@ Suppose the agent has an experience (s, a, r, s’)
@ This provides one piece of data to update Q[s, a|.
@ The experience (s, a, r,s’) provides the data point:

r+ymax Q[s’, d]
al
which can be used in the TD formula giving:

Q[s,a] — Qls, a] + « (r + 7y max Q[s', a'] — QJs, a]>

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 9

begin
initialize Q[S, A] arbitrarily
observe current state s
repeat forever:
select and carry out an action a
observe reward r and state s’
Qls,a]l < Q[s,a] + a(r+ymaxy Q[s',a] — Qls, a])
s« s
end-repeat
end

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 10

Properties of Q-learning

@ Q-learning converges to the optimal policy, no matter

what the agent does, as long as it tries the each action in
each state enough.

e But what should the agent do?

» exploit: when in state s,

» explore:

@©D. Poole and A. Mackworth 2008

Artificial Intelligence, Lecture 11.2, Page 11

Properties of Q-learning

@ Q-learning converges to the optimal policy, no matter

what the agent does, as long as it tries the each action in
each state enough.

e But what should the agent do?
» exploit: when in state s, select the action that
maximizes Q[s, a]

explore: select another action

@©D. Poole and A. Mackworth 2008

Artificial Intelligence, Lecture 11.2, Page 12

Exploration Strategies

@ The e-greedy strategy: choose a random action with

probability € and choose a best action with probability
1—e

@ Softmax action selection: in state s, choose action a with
probability
eQls,al/
Za eQls,al/T

where 7 > 0 is the temperature.

@ “optimism in the face of uncertainty”: initialize the @
function to values that encourage exploration.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 13

Problems with Q-learning

@ It only does one-step backup. You can use the same data
to provide information to more states (even without using
a model).

@ It only does one backup between each experience.

» In many domains, you can do lots of computation
between experiences (e.g., if the robot has to move to
get experiences).

» You can make better use of the data by building a
model, and using MDP methods to determine optimal

policy.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 14

On-policy Learning

@ Q-learning does off-policy learning: it learns the value of
the optimal policy, no matter what it does.

@ This could be bad if the exploration policy is dangerous.
@ On-policy learning learns the value of the policy being
followed.

e.g., act greedily 80% of the time and act randomly 20%
of the time

o If the agent is actually going to explore, it may be better
to optimize the actual policy it is going to do.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 15

SARSA

begin
initialize Q[S, A] arbitrarily
observe current state s
select action a using a policy based on @
repeat forever:
carry out an action a
observe reward r and state s’
select action a’ using a policy based on @
Q[Sv a] A Q[Sv a] + o (I‘ + VQ[sla a/] - Q[S7 a])
s« s
a«— a,;
end-repeat
end

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 16

Multi-step backups

Suppose you are considering updating Q[s;, a,] based on
“future” experiences:

Sty Aty Fe4+1, Se4+1, At+1, 1425 St42, de+2, 143, St+3, de+3, - - -

@ How can you use more than one-step lookahead?
@ Is an off-policy or on-policy method better?

@ How can we update Q[s;, a;] by looking “backwards” at
time t + 1, then at t + 2, then at t + 3, etc.?

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 17

Multi-step lookaheads

lookahead | Weight Return

1 step 1-A res1 + 7 V(Se11)

2 step (1—=X)A rev1 + Yrepo + ’72 V(st42)

3 step (1-)‘))‘2 Fev1 + Yrep2 + ’y2rt+3 + 73 V(st43)

4 step (1= Fesr + Y2 + 7213 + 73 rea + 7V (s,
n step (T =N | rpr +9reg2 + 7P reas + - 4+ 7"V (Sttn)
total 1

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 18

Function Approximation

@ Usually we don’t want to reason in terms of states, but in
terms of features.

@ In the state-based methods, information about one state
cannot be used by similar states.

@ If there are too many parameters to learn, it takes too
long.

@ Idea: Express the value function as a function of the
features. Most typical is a linear function of the features.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 19

Gradient descent

To find a (local) minimum of a real-valued function f(x):
@ assign an arbitrary value to x
@ repeat

daf
g dx

where 7 is the step size

X — X —

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 20

Gradient descent

To find a (local) minimum of a real-valued function f(x):

@ assign an arbitrary value to x

@ repeat
df
X — X —nN—
77dx
where 7 is the step size
To find a local minimum of real-valued function f(xi, ..., x,):
@ assign arbitrary values to xi, ..., X,
@ repeat:
for each x;
of
X. <_ X. J— —
' ' n@x,-

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 21

Linear Regression

@ A linear function of variables Xi, ..., X, is of the form
"Xy, X)) = wo+wy X Xy 4+ w, x X,

where W = (wp, wy, ..., w,) is a tuple of weights. (Let
Xo =1).

@ Given a set E of examples, where example e has input
value X; = e; for each i and an observed value, o, let

Errorg(w) = Z(fW(el, o €n) = 0p)?

ecE

@ Minimizing the error using gradient descent, each
example should update w; using:

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 22

SARSA with linear function approximation

@ One step backup provides the examples that can be used
in a linear regression.

@ Suppose Fi,..., F, are the features of the state and the
action.

@ So Qw(s,a) = wo+ wiFi(s,a) + -+ + w,F,(s, a)

@ An experience (s, a,r,s’,a’) where s, a has feature values
Fi=e,...,F, = e, provides the “example”:

input: Qw(s, a)
output: r+ yQw(s’, d)

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 23

SARSA with linear function approximation

Given ~:discount factor; 7:step size
Assign weights W = (wp, ..., w,) arbitrarily
begin
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s’
select action & (using a policy based on Q)
let 0 = r +vQw(s’,a") — Qu(s, a)
Fori=0ton
w; — w; +noFi(s, a)
s« s a«—a;
end-repeat
end

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 24

Model-based Reinforcement Learning

@ Model-based reinforcement learning uses the experiences
in a more effective manner.

@ It is used when collecting experiences is expensive (e.g., in
a robot or an online game), and you can do lots of
computation between each experience.

@ ldea: learn the MDP and interleave acting and planning.

@ After each experience, update probabilities and the
reward, then do some steps of asynchronous value
iteration.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 25

Model-based learner

Data Structures: Q[S,A], T[S, A, S], R[S, A]
Assign @ arbitrarily, T = prior counts, R =0
observe current state s
repeat forever:

select and carry out action a

observe reward r and state s’

T[s,a,s'] < T[s,a,s'| +1

R[s,a] < R[s, a] + a(r — R[s, a])

repeat for a while

Select state s, action a;

let P = 252 T[s1, a1, 5]

Q[Sla al] — Z M (R[517 al] + Y rnagx Q[S27 32])

s2
end repeat

end-repeat

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 26

