
Reinforcement Learning

What should an agent do given:

Prior knowledge possible states of the world
possible actions

Observations current state of world
immediate reward / punishment

Goal act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics
and model of reward not given.
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Reinforcement Learning Examples

Game - reward winning, punish losing

Dog - reward obedience, punish destructive behavior

Robot - reward task completion, punish dangerous
behavior
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Experiences

We assume there is a sequence of experiences:

state, action, reward , state, action, reward , ....

At any time it must decide whether to
I explore to gain more knowledge

I exploit the knowledge it has already discovered
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Why is reinforcement learning hard?

What actions are responsible for the reward may have
occurred a long time before the reward was received.

The long-term effect of an action of the robot depends on
what it will do in the future.

The explore-exploit dilemma: at each time should the
robot be greedy or inquisitive?
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Reinforcement learning: main approaches

search through a space of policies (controllers)

learn a model consisting of state transition function
P(s ′|a, s) and reward function R(s, a, s ′); solve this an an
MDP.

learn Q∗(s, a), use this to guide action.
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Temporal Differences

Suppose we have a sequence of values:

v1, v2, v3, . . .

And want a running estimate of the average of the first k
values:

Ak =
v1 + · · ·+ vk

k
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Temporal Differences (cont)

When a new value vk arrives:

Ak =
v1 + · · ·+ vk−1 + vk

k
kAk = v1 + · · ·+ vk−1 + vk

= (k − 1)Ak−1 + vk

Ak =
k − 1

k
Ak−1 +

1

k
vk

Let α = 1
k

, then

Ak = (1− α)Ak−1 + αvk

= Ak−1 + α(vk − Ak−1)

Often we use this update with α fixed.
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Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

The experience 〈s, a, r , s ′〉 provides the data point:

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a] + α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)
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Q-learning

begin
initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a]← Q[s, a] + α (r + γ maxa′ Q[s ′, a′]− Q[s, a])
s ← s ′;

end-repeat
end
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Properties of Q-learning

Q-learning converges to the optimal policy, no matter
what the agent does, as long as it tries the each action in
each state enough.

But what should the agent do?
I exploit: when in state s,

select the action that
maximizes Q[s, a]

I explore:

select another action
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Exploration Strategies

The ε-greedy strategy: choose a random action with
probability ε and choose a best action with probability
1− ε.
Softmax action selection: in state s, choose action a with
probability

eQ[s,a]/τ∑
a eQ[s,a]/τ

where τ > 0 is the temperature.

“optimism in the face of uncertainty”: initialize the Q
function to values that encourage exploration.
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Problems with Q-learning

It only does one-step backup. You can use the same data
to provide information to more states (even without using
a model).

It only does one backup between each experience.
I In many domains, you can do lots of computation

between experiences (e.g., if the robot has to move to
get experiences).

I You can make better use of the data by building a
model, and using MDP methods to determine optimal
policy.
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On-policy Learning

Q-learning does off-policy learning: it learns the value of
the optimal policy, no matter what it does.

This could be bad if the exploration policy is dangerous.

On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20%
of the time

If the agent is actually going to explore, it may be better
to optimize the actual policy it is going to do.
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SARSA

begin
initialize Q[S ,A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s ← s ′;
a← a′;

end-repeat
end
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Multi-step backups

Suppose you are considering updating Q[st , ar ] based on
“future” experiences:

st , at , rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, st+3, at+3, . . .

How can you use more than one-step lookahead?

Is an off-policy or on-policy method better?

How can we update Q[st , at ] by looking “backwards” at
time t + 1, then at t + 2, then at t + 3, etc.?
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Multi-step lookaheads

lookahead Weight Return
1 step 1− λ rt+1 + γV (st+1)
2 step (1− λ)λ rt+1 + γrt+2 + γ2V (st+2)
3 step (1− λ)λ2 rt+1 + γrt+2 + γ2rt+3 + γ3V (st+3)
4 step (1− λ)λ3 rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + γ4V (st+3)
· · · · · · · · ·
n step (1− λ)λn−1 rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnV (st+n)
· · · · · · · · ·
total 1
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Function Approximation

Usually we don’t want to reason in terms of states, but in
terms of features.

In the state-based methods, information about one state
cannot be used by similar states.

If there are too many parameters to learn, it takes too
long.

Idea: Express the value function as a function of the
features. Most typical is a linear function of the features.
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Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x ← x − ηdf

dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi ← xi − η
∂f

∂xi
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Linear Regression

A linear function of variables X1, . . . ,Xn is of the form

f w (X1, . . . ,Xn) = w0 + w1 × X1 + · · ·+ wn × Xn

where w = 〈w0,w1, . . . ,wn〉 is a tuple of weights. (Let
X0 = 1).

Given a set E of examples, where example e has input
value Xi = ei for each i and an observed value, oe let

ErrorE (w) =
∑
e∈E

(f w (e1, . . . , en)− oe)2

Minimizing the error using gradient descent, each
example should update wi using:
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SARSA with linear function approximation

One step backup provides the examples that can be used
in a linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience 〈s, a, r , s ′, a′〉 where s, a has feature values
F1 = e1, . . . ,Fn = en, provides the “example”:

input: Qw (s, a)
output: r + γQw (s ′, a′)
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SARSA with linear function approximation

Given γ:discount factor; η:step size
Assign weights w = 〈w0, . . . ,wn〉 arbitrarily
begin

observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw )
let δ = r + γQw (s ′, a′)− Qw (s, a)
For i = 0 to n

wi ← wi + ηδFi(s, a)
s ← s ′; a← a′;

end-repeat
end
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Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences
in a more effective manner.

It is used when collecting experiences is expensive (e.g., in
a robot or an online game), and you can do lots of
computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the
reward, then do some steps of asynchronous value
iteration.
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Model-based learner

Data Structures: Q[S ,A], T [S ,A, S ], R[S ,A]
Assign Q arbitrarily, T = prior counts, R = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′]← T [s, a, s ′] + 1
R[s, a]← R[s, a] + α(r − R[s, a])
repeat for a while

Select state s1, action a1

let P =
∑

s2
T [s1, a1, s2]

Q[s1, a1]←
∑
s2

T [s1, a1, s2]

P

(
R[s1, a1] + γ max

a2

Q[s2, a2]

)
end repeat

end-repeat
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