
Reinforcement Learning

What should an agent do given:

Prior knowledge possible states of the world
possible actions

Observations current state of world
immediate reward / punishment

Goal act to maximize accumulated reward

Like decision-theoretic planning, except model of dynamics
and model of reward not given.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 1

Reinforcement Learning Examples

Game - reward winning, punish losing

Dog - reward obedience, punish destructive behavior

Robot - reward task completion, punish dangerous
behavior

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 2

Experiences

We assume there is a sequence of experiences:

state, action, reward , state, action, reward ,

At any time it must decide whether to
I explore to gain more knowledge

I exploit the knowledge it has already discovered

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 3

Why is reinforcement learning hard?

What actions are responsible for the reward may have
occurred a long time before the reward was received.

The long-term effect of an action of the robot depends on
what it will do in the future.

The explore-exploit dilemma: at each time should the
robot be greedy or inquisitive?

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 4

Reinforcement learning: main approaches

search through a space of policies (controllers)

learn a model consisting of state transition function
P(s ′|a, s) and reward function R(s, a, s ′); solve this an an
MDP.

learn Q∗(s, a), use this to guide action.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 5

Temporal Differences

Suppose we have a sequence of values:

v1, v2, v3, . . .

And want a running estimate of the average of the first k
values:

Ak =
v1 + · · ·+ vk

k

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 6

Temporal Differences (cont)

When a new value vk arrives:

Ak =
v1 + · · ·+ vk−1 + vk

k
kAk = v1 + · · ·+ vk−1 + vk

= (k − 1)Ak−1 + vk

Ak =
k − 1

k
Ak−1 +

1

k
vk

Let α = 1
k

, then

Ak = (1− α)Ak−1 + αvk

= Ak−1 + α(vk − Ak−1)

Often we use this update with α fixed.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 7

Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

The experience 〈s, a, r , s ′〉 provides the data point:

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a] + α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 8

Q-learning

Idea: store Q[State,Action]; update this as in
asynchronous value iteration, but using experience
(empirical probabilities and rewards).

Suppose the agent has an experience 〈s, a, r , s ′〉
This provides one piece of data to update Q[s, a].

The experience 〈s, a, r , s ′〉 provides the data point:

r + γ max
a′

Q[s ′, a′]

which can be used in the TD formula giving:

Q[s, a]← Q[s, a] + α
(
r + γ max

a′
Q[s ′, a′]− Q[s, a]

)

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 9

Q-learning

begin
initialize Q[S ,A] arbitrarily
observe current state s
repeat forever:

select and carry out an action a
observe reward r and state s ′

Q[s, a]← Q[s, a] + α (r + γ maxa′ Q[s ′, a′]− Q[s, a])
s ← s ′;

end-repeat
end

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 10

Properties of Q-learning

Q-learning converges to the optimal policy, no matter
what the agent does, as long as it tries the each action in
each state enough.

But what should the agent do?
I exploit: when in state s,

select the action that
maximizes Q[s, a]

I explore:

select another action

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 11

Properties of Q-learning

Q-learning converges to the optimal policy, no matter
what the agent does, as long as it tries the each action in
each state enough.

But what should the agent do?
I exploit: when in state s, select the action that

maximizes Q[s, a]
I explore: select another action

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 12

Exploration Strategies

The ε-greedy strategy: choose a random action with
probability ε and choose a best action with probability
1− ε.
Softmax action selection: in state s, choose action a with
probability

eQ[s,a]/τ∑
a eQ[s,a]/τ

where τ > 0 is the temperature.

“optimism in the face of uncertainty”: initialize the Q
function to values that encourage exploration.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 13

Problems with Q-learning

It only does one-step backup. You can use the same data
to provide information to more states (even without using
a model).

It only does one backup between each experience.
I In many domains, you can do lots of computation

between experiences (e.g., if the robot has to move to
get experiences).

I You can make better use of the data by building a
model, and using MDP methods to determine optimal
policy.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 14

On-policy Learning

Q-learning does off-policy learning: it learns the value of
the optimal policy, no matter what it does.

This could be bad if the exploration policy is dangerous.

On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20%
of the time

If the agent is actually going to explore, it may be better
to optimize the actual policy it is going to do.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 15

SARSA

begin
initialize Q[S ,A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s ← s ′;
a← a′;

end-repeat
end

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 16

Multi-step backups

Suppose you are considering updating Q[st , ar] based on
“future” experiences:

st , at , rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, st+3, at+3, . . .

How can you use more than one-step lookahead?

Is an off-policy or on-policy method better?

How can we update Q[st , at] by looking “backwards” at
time t + 1, then at t + 2, then at t + 3, etc.?

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 17

Multi-step lookaheads

lookahead Weight Return
1 step 1− λ rt+1 + γV (st+1)
2 step (1− λ)λ rt+1 + γrt+2 + γ2V (st+2)
3 step (1− λ)λ2 rt+1 + γrt+2 + γ2rt+3 + γ3V (st+3)
4 step (1− λ)λ3 rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + γ4V (st+3)
· · · · · · · · ·
n step (1− λ)λn−1 rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnV (st+n)
· · · · · · · · ·
total 1

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 18

Function Approximation

Usually we don’t want to reason in terms of states, but in
terms of features.

In the state-based methods, information about one state
cannot be used by similar states.

If there are too many parameters to learn, it takes too
long.

Idea: Express the value function as a function of the
features. Most typical is a linear function of the features.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 19

Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x ← x − ηdf

dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi ← xi − η
∂f

∂xi

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 20

Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x ← x − ηdf

dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi ← xi − η
∂f

∂xi

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 21

Linear Regression

A linear function of variables X1, . . . ,Xn is of the form

f w (X1, . . . ,Xn) = w0 + w1 × X1 + · · ·+ wn × Xn

where w = 〈w0,w1, . . . ,wn〉 is a tuple of weights. (Let
X0 = 1).

Given a set E of examples, where example e has input
value Xi = ei for each i and an observed value, oe let

ErrorE (w) =
∑
e∈E

(f w (e1, . . . , en)− oe)2

Minimizing the error using gradient descent, each
example should update wi using:

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 22

SARSA with linear function approximation

One step backup provides the examples that can be used
in a linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience 〈s, a, r , s ′, a′〉 where s, a has feature values
F1 = e1, . . . ,Fn = en, provides the “example”:

input: Qw (s, a)
output: r + γQw (s ′, a′)

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 23

SARSA with linear function approximation

Given γ:discount factor; η:step size
Assign weights w = 〈w0, . . . ,wn〉 arbitrarily
begin

observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw)
let δ = r + γQw (s ′, a′)− Qw (s, a)
For i = 0 to n

wi ← wi + ηδFi(s, a)
s ← s ′; a← a′;

end-repeat
end

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 24

Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences
in a more effective manner.

It is used when collecting experiences is expensive (e.g., in
a robot or an online game), and you can do lots of
computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the
reward, then do some steps of asynchronous value
iteration.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 25

Model-based learner

Data Structures: Q[S ,A], T [S ,A, S], R[S ,A]
Assign Q arbitrarily, T = prior counts, R = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′]← T [s, a, s ′] + 1
R[s, a]← R[s, a] + α(r − R[s, a])
repeat for a while

Select state s1, action a1

let P =
∑

s2
T [s1, a1, s2]

Q[s1, a1]←
∑
s2

T [s1, a1, s2]

P

(
R[s1, a1] + γ max

a2

Q[s2, a2]

)
end repeat

end-repeat
c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 11.2, Page 26

