
Predictions from Training Examples

We want to predict the output Y of a new case that has input
X = x given the training examples E :

p(Y |x ∧ E ) =
∑

m∈Models

P(Y ∧m|x ∧ E )

=
∑
m∈M

P(Y |m ∧ x ∧ E )P(m|x ∧ E )

=
∑
m∈M

P(Y |m ∧ x)P(m|E )

Models is a set of mutually exclusive and covering hypotheses.
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Learning Under Uncertainty

We want to learn models from examples.

P(model |E ) =
P(E |model)× P(model)

P(E ).

The likelihood, P(E |model), is the probability that this
model would have produced examples E .

The prior, P(model), encodes the learning bias
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Bayesian Leaning of Probabilities

Suppose there are two outcomes A and ¬A. We would
like to learn the probability of A given some training
examples, E .

We can treat the probability of A as a real-valued random
variable on the interval [0, 1], called probA.

P(probA=p|E ) =
P(E |probA=p)× P(probA=p)

P(E )

Suppose the examples, E , is a sequence of n A’s out of
independent m trials,

P(E |probA=p) = pn × (1− p)m−n

Uniform prior: P(probA=p) = 1 for all p ∈ [0, 1].
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Posterior Probabilities for Different Training

Examples
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MAP model

The maximum a posteriori probability (MAP) model is
the model that maximizes P(model |E ). That is, it
maximizes:

P(E |model)× P(model)

Thus it minimizes:

(− log P(E |model)) + (− log P(model))

which is the number of bits to send the examples, E ,
given the model plus the number of bits to send the
model.
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Information theory overview

A bit is a binary digit.

1 bit can distinguish 2 items

k bits can distinguish 2k items

n items can be distinguished using log2 n bits

Can you do better?
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Information and Probability

Let’s design a code to distinguish elements of {a, b, c , d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

This code sometimes uses 1 bit and sometimes uses 3 bits. On
average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.

The string aacabbda has code 00110010101110.
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Information Content

To identify x , you need − log2 P(x) bits.

If you have a distribution over a set and want to a
identify a member, you need the expected number of bits:∑

x

−P(x)× log2 P(x).

This is the information content or entropy of the
distribution.

The expected number of bits it takes to describe a
distribution given evidence e:

I (e) =
∑

x

−P(x |e)× log2 P(x |e).
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Information Gain

If you have a test that can distinguish the cases where α is
true from the cases where α is false, the information gain
from this test is:

I (true)− (P(α)× I (α) + P(¬α)× I (¬α)).

I (true) is the expected number of bits needed before the
test

P(α)× I (α) + P(¬α)× I (¬α) is the expected number of
bits after the test.
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Averaging Over Models

Idea: Rather than choosing the most likely model,
average over all models, weighted by their posterior
probabilities given the examples.

If you have observed n A’s out of m trials
I the most likely value (MAP) is n

m
I the expected value is n+1

m+2
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