Supervised Learning

Given:

- a set of inputs features X_1, \ldots, X_n
- a set of target features Y_1, \ldots, Y_k
- a set of training examples where the values for the input features and the target features are given for each example
- a new example, where only the values for the input features are given

predict the values for the target features for the new example.

Supervised Learning

Given:

- a set of inputs features X_1, \ldots, X_n
- a set of target features Y_1, \ldots, Y_k
- a set of training examples where the values for the input features and the target features are given for each example
- a new example, where only the values for the input features are given

predict the values for the target features for the new example.

- classification when the Y_i are discrete
- regression when the Y_i are continuous

向下 イヨト イヨト

Suppose F is a feature and e is an example:

- val(e,F) is the value of feature F for example e.
- pval(e,F) is the predicted value of feature F for example e.
- The error of the prediction is a measure of how close pval(e, Y) is to val(e, Y).
- There are many possible errors that could be measured.

向下 イヨト イヨト

A travel agent wants to predict the preferred length of a trip, which can be from 1 to 6 days. (No input features).

Two representations of the same data

(each Y_i is an indicator variable):

Example	Y	Example	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6
e_1	1	e_1	1	0	0	0	0	0
e_2	6	e_2	0	0	0	0	0	1
e_3	6	e_3	0	0	0	0	0	1
e_4	2	e_4	0	1	0	0	0	0
e_5	1	e_5	1	0	0	0	0	0

What is a prediction?

A B K A B K

Measures of error

E is the set of examples. **O** is the set of output features.

• absolute error

$$\sum_{e \in E} \sum_{Y \in \mathbf{O}} |val(e, Y) - pval(e, Y)|$$

- 170

★ E ► ★ E ►

æ

Measures of error

E is the set of examples. **O** is the set of output features.

• absolute error

$$\sum_{e \in E} \sum_{Y \in \mathbf{O}} |val(e, Y) - pval(e, Y)|$$

• sum of squares error

$$\sum_{e \in E} \sum_{Y \in \mathbf{O}} (val(e, Y) - pval(e, Y))^2$$

回 と く ヨ と く ヨ と

æ

Measures of error

E is the set of examples. **O** is the set of output features.

• absolute error

$$\sum_{e \in E} \sum_{Y \in \mathbf{O}} |val(e, Y) - pval(e, Y)|$$

• sum of squares error

$$\sum_{e \in E} \sum_{Y \in \mathbf{O}} (val(e, Y) - pval(e, Y))^2$$

• A cost-based error takes into account costs of various errors.

向下 イヨト イヨト

Measures of error (cont.)

When output features are $\{0,1\}$:

• likelihood of the data

$$\prod_{e \in E} \prod_{Y \in \mathbf{O}} \mathsf{pval}(e, Y)^{\mathsf{val}(e, Y)} (1 - \mathsf{pval}(e, Y))^{(1 - \mathsf{val}(e, Y))}$$

白 ト イヨト イヨト

Measures of error (cont.)

When output features are $\{0, 1\}$:

• likelihood of the data

$$\prod_{e \in E} \prod_{Y \in \mathbf{O}} \mathsf{pval}(e, Y)^{\mathsf{val}(e, Y)} (1 - \mathsf{pval}(e, Y))^{(1 - \mathsf{val}(e, Y))}$$

entropy

$$-\sum_{e \in E} \sum_{Y \in \mathbf{O}} [val(e, Y) \log pval(e, Y) + (1 - val(e, Y)) \log(1 - pval(e, Y))]$$

★ 문 ► ★ 문 ►

A ■

• The prediction that minimizes the sum of squares error on *E* is the mean (average) value of *Y*.

• E • • E •

- The prediction that minimizes the sum of squares error on *E* is the mean (average) value of *Y*.
- The value that minimizes the absolute error is the median value of *Y*.

A 3 1 A 3 1

- The prediction that minimizes the sum of squares error on *E* is the mean (average) value of *Y*.
- The value that minimizes the absolute error is the median value of *Y*.
- When Y has domain {0,1}, the prediction that maximizes the likelihood is the empirical probability.

伺 とう ヨン うちょう

- The prediction that minimizes the sum of squares error on *E* is the mean (average) value of *Y*.
- The value that minimizes the absolute error is the median value of *Y*.
- When Y has domain {0,1}, the prediction that maximizes the likelihood is the empirical probability.
- When Y has domain {0,1}, the prediction that minimizes the entropy is the empirical probability.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The prediction that minimizes the sum of squares error on *E* is the mean (average) value of *Y*.
- The value that minimizes the absolute error is the median value of *Y*.
- When Y has domain {0,1}, the prediction that maximizes the likelihood is the empirical probability.
- When Y has domain {0,1}, the prediction that minimizes the entropy is the empirical probability.

But that doesn't mean that these predictions minimize the error for future predictions.

▲圖▶ ★ 国▶ ★ 国▶

To evaluate how well a learner will work on future predictions, we divide the examples into:

- training examples that are used to train the learner
- test examples that are used to evaluate the learner

...these must be kept separate.

A B K A B K

Learning Probabilities

- Empirical probabilities do not make good predictors when evaluated by likelihood or entropy.
- Why?

御 と く き と く き と

3

Learning Probabilities

- Empirical probabilities do not make good predictors when evaluated by likelihood or entropy.
- Why? A probability of zero means "impossible" and has infinite cost.

伺下 イヨト イヨト

2

Learning Probabilities

- Empirical probabilities do not make good predictors when evaluated by likelihood or entropy.
- Why? A probability of zero means "impossible" and has infinite cost.
- Solution: add (non-negative) pseudo-counts to the data. Suppose n_i is the number of examples with $X = v_i$, and c_i is the pseudo-count:

$$P(X = v_i) = \frac{c_i + n_i}{\sum_{i'} c_{i'} + n_{i'}}$$

 Pseudo-counts convey prior knowledge. Consider: "how much more would I believe v_i if I had seen one example with v_i true than if I has seen no examples with v_i true?"

(ロ) (同) (E) (E) (E)